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Abstract

A brain–machine interface, or BMI, directly
connects the brain to the external world, by-
passing damaged biological pathways. It re-
places the impaired parts of the nervous system
with hardware and software that translate a
user’s internal motor commands into action.
In this chapter, we will discuss the four basic
components of an intracortical BMI: an in-
tracortical neural recording, a decoding algo-
rithm, an output device, and sensory feedback.
In Sect. 5.2 we will discuss intracortical sig-
nals, the electrodes used to record them, and
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where in the brain to record them. The salient
features of the neural signal useful for control
are extracted with a decoding algorithm. This
algorithm translates the neural signal into an
intended action which is executed by an output
device, such as a robotic limb, the person’s
own muscles, or a computer interface. In Sect.
5.3 we will discuss classification decoders and
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how they can be implemented in a BMI for
communication. In Sect. 5.4 we will discuss
continuous decoders for moment-by-moment
control of a computer cursor or robotic arm. In
Sect. 5.5, we will discuss a BMI that controls
electrical stimulation to directly activate a pa-
tient’s own paralyzed muscles and reanimate
their arm. Finally, in Sect. 5.6, we will dis-
cuss ongoing work toward expanding sensory
feedback with the goal of making intracortical
BMIs a clinically viable option for treating
paralysis, as well as other research trends.

Keywords

Neural population activity · Motor cortex ·
Motor control · Neural decoding ·
Probabilistic models · Classifier · Kalman
filter · Functional electrical stimulation

5.1 What Is a Brain–Machine
Interface?

Humans are capable of a nearly endless repertoire
of movements: we can walk, run, skip, reach,
grab, kick, throw, dance, and more. The ease
with which most of us perform these movements
conceals the fact that motor control is one of
the most complex tasks the brain performs. More
brain resources are devoted to the problem of
controlling our movements than are devoted to
any other task we might perform. The primary
motor cortex, as its name indicates, is the area of
the brain chiefly responsible for sending axons to
the spinal cord to exert control over the muscles.
In addition to primary motor cortex, there are at
least six other cortical areas that also send axons
down the spinal cord to help control muscles:
dorsal premotor cortex, ventral premotor cortex,
supplementary motor area, and three separate re-
gions of the cingulate motor area. In addition to
cortex, several subcortical regions are engaged
during motor control, including major parts of the
thalamus, basal ganglia, and the spinal cord. The
cerebellum, which is composed of more neurons

than the rest of the brain combined, is involved
in coordinating movements. Motor control only
seems easy because we don’t tend to think about
it very much: we just do it. In fact, the only time
we really think about motor control is when it is
impaired.

Movements can become impaired for a num-
ber of reasons, including neurological injury or
disorders at the level of the brain, spinal cord, pe-
ripheral nerves, and muscles. The most common
causes of paralysis are stroke and spinal cord in-
jury. There are approximately 291,000Americans
currently living with spinal cord injuries, with
more than 17,500 new cases each year (National
Spinal Cord Injury Statistical Center). About 40%
of these individuals are paraplegic, i.e., their legs
are paralyzed, and 60% are quadriplegic, i.e.,
their arms and legs are paralyzed. Fewer than 1%
of patients fully recover from spinal cord injuries.
Spinal cord injuries disrupt the natural pathway
between the brain and the muscles but leave the
cortical neurons involved in generating the move-
ment signals intact. If we could leverage these
intact control signals, and decode motor intent,
we could create assistive technologies that bypass
the damaged pathway to restore motor control to
those who have lost it. This is the clinical goal of
brain–machine interfaces.

A brain–machine interface, or BMI, directly
connects the brain to the external world, bypass-
ing damaged biological pathways. It replaces the
impaired parts of the nervous system with hard-
ware and software that translate a user’s internal
motor commands into action. BMI technologies
serve as a neural engineering solution to replace
or restore motor or sensory function to patients
with neurological injury or disease.

An intracortical BMI (iBMI) is driven by the
action potentials recorded from individual neu-
rons. Action potentials, or “spikes,” are the elec-
trical signals by which neurons transmit informa-
tion. Intracortical BMIs involve implanting elec-
trodes directly into the cortex. This neural record-
ing method provides greater spatial and temporal
specificity than noninvasive recording techniques
because the electrodes are only microns from
the neurons. The greater specificity increases the
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decoding accuracy and allows for higher degree-
of-freedom control.

5.1.1 History of Intracortical BMIs

In 1969, Eberhard Fetz created what is consid-
ered to be the first modern-day intracortical BMI.
In this first example of an iBMI, he showed
that monkeys could learn to volitionally modu-
late the activity of a single neuron in primary
motor cortex in order to receive a food reward.
To do so, Fetz recorded the spikes from a neu-
ron while providing the monkey with visual or
auditory feedback about the number of spikes
that neuron generated per unit time (i.e., firing
rate). When the monkey increased the firing rate
above a certain threshold, he was rewarded. Fol-
lowing this operant conditioning, monkeys would
quickly and consistently increase the firing rate
of the recorded neuron to earn rewards. Monkeys
were also asked to separately control two neurons,
increasing the rate of one and decreasing the rate
of the other. The independent control of two neu-
rons demonstrated that the control was not simply
achieved by a general increase of all neurons’
firing rates. This early study provided the first
proof of concept that a person might someday
be able to modulate neural activity to control a
computer cursor or robotic arm.

The Fetz study was near the beginning of
several decades of intensive work to define the
nature of the signals encoded in motor cortex. In
1970, Humphrey, Schmidt, and Thompson con-
ducted a set of experiments that addressed the
possibility of using neural signals to make quan-
titative predictions of simple motor behaviors.
Using recordings from a small set of neurons
during a wrist flexion and extension task, they
predicted arm position, velocity, and net force
exerted about the joint. They showed that force
was quite accurately predicted and that arm posi-
tion and velocity could also be predicted, though
typically not as well. In the 1980s, Apostolos
Georgopoulos showed that neural activity dur-
ing whole-arm reaches predicted the direction
of the reach quite well. Together these findings
suggested that motor cortical neural activity was

correlated with extrinsic motor control variables
(e.g., the direction of the arm in space) as well as
intrinsic motor control variables (e.g., the force
exerted by the arm). These results have been the
basis of BMI development since.

Over the following decades, technology devel-
oped that enabled researchers to record from pop-
ulations of tens to hundreds of neurons. In 1999,
neural signals recorded simultaneously from rat
motor cortex were used to control a robotic arm
[1]. Soon after, the hand trajectories of primates
were predicted from the activity of a population
of neurons [2], and monkeys were using neural
activity to control computer cursors [3, 4] and
robotic arms for reaching and grasping [5]. This
was the beginning of a now-flourishing field of
iBMI development and research.

In 2006, a group of researchers at BrainGate
performed the first clinical trial to establish an
iBMI in a human [42]. They recorded neural
population activity from a paralyzed person as he
imagined limb movements and used that activity
to drive the movement of a cursor on a computer
screen. Then, in 2012, the same group demon-
strated that a person who had been paralyzed by
brainstem stroke could directly control a robotic
arm [43]. Specifically, she was able to control
the velocity of the robot’s hand to make reaches,
and she simultaneously controlled a decoder that
could execute one of four hand actions to grasp
objects. With this level of control, she was able to
use the robotic arm to grasp a bottle and bring it to
her mouth for a drink. Compared to natural reach-
ing and graspingmovements, the brain-controlled
robot’s reaching and grasping were slower and
less accurate. However, this result showed that
it is possible to use tens of neurons to control a
robotic device and interact with objects. Shortly
afterward, a team at the University of Pittsburgh
demonstrated that a person could control ten de-
grees of freedom of a robotic arm [6, 7]. The ten
degrees of freedom consisted of three dimensions
of translation, three dimensions of orientation of
the robot’s hand, and four dimensions of hand
shape. By including the hand shape dimensions,
the researchers could increase the repertoire of
possible movements to include dexterous manip-
ulation of objects. Ultimately, the person could
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Fig. 5.1 An iBMI user at the University of Pittsburgh controls a robotic arm to eat a chocolate bar as members of the
research team look on. (Photo credit: UPMC)

perform skillful and coordinated reach and grasp
movements like those that are essential for daily
activities, such as shaking hands or feeding one-
self (Fig. 5.1).

The ultimate goal of iBMI systems for people
with paralysis is to restore the function of their
own arms, hands, and legs. Currently, the best
prospect for this is to use neural commands to
activate the muscles with electrical stimulation.
Two groups have recently shown progress in iB-
MIs to control functional electrical stimulation
(FES) of a user’s own muscles. The electrical
stimulation activates the muscles, causing them
to contract and thus to generate movement. In
2016, a group of researchers at Battelle was the
first to demonstrate successful control of mus-
cle activation using intracortically recorded sig-
nals in a human [8]. Neural activity was de-
coded to control the stimulation of muscles in the
forearm via electrodes in a custom-built sleeve.
With the iBMI-controlled FES, the person was
able to independently control his fingers as well

as six wrist and hand movements, allowing him
to perform some activities of daily living. In
2017, a group of researchers at Case Western Re-
serve University demonstrated that an individual
with a high cervical spinal cord injury could use
his own cortical activity to control a chronically
implanted FES system to perform coordinated
reaching and grasping movements with his own
paralyzed arm and hand [9]. He could volitionally
perform reaches to drink coffee and feed himself
(Fig. 5.2). These studies are a major step toward
a clinically viable BMI for reaching and grasping
after paralysis.

We have been focusing on iBMIs for move-
ment, but the principles of decoding motor intent
can also be applied to solve the problem commu-
nication, allowing users to “type” by moving a
computer cursor to different letters on a screen.
There is a group of patients for whom restoring
communication is crucial. These patients are re-
ferred to as “locked in” because, although they
are awake and aware, they have lost control of
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Fig. 5.2 An iBMI user controls functional electrical stimulation of muscles in his arm and hand to feed himself as part
of the BrainGate2 clinical trials. (Photo credit: Russell Lee; Case Western Reserve University/Cleveland FES Center)

all voluntary muscles, except (in some cases)
those that control vertical eye movements and
blinking, due to brainstem stroke or amyotrophic
lateral sclerosis (ALS). These patients have no
way of speaking or producing facial expressions,
so restoring some form of communication would
dramatically enhance their quality of life. For
people with paraplegia or quadriplegia who can
still speak, a communication BMI could provide
an important means to interact with others via
email or texting. A number of studies have estab-
lished the feasibility of iBMIs for communication
[10, 11]. In 2017, a group at Stanford University
developed a high-performance iBMI for commu-
nication that allows users to control a computer
tablet to perform activities like browsing the web
and texting (Fig. 5.3; [12]). Users were able to
perform typing tasks that simulated real-world
applications such as typing messages at a conver-
sational pace, with a typing rate of 24 characters
per minute.

In this chapter, we will discuss motor iBMIs
for both movement and communication. We will

describe the components of an iBMI, the state-of-
the-art control, and future directions of research
and development.

5.1.2 Components
of an Intracortical BMI

A BMI consists of four basic components: a neu-
ral recording, a decoding algorithm, an output
device, and sensory feedback (Fig. 5.4). Intra-
cortical BMIs begin by recording neural signals
from electrodes implanted in the cortex. Next,
the salient features of the neural signal useful for
control are extracted with a decoding algorithm.
This algorithm translates the neural signal into an
intended action which is executed by an output
device, such as a robotic limb, the person’s own
muscles, or a computer interface. Finally, the
user receives sensory feedback about the action,
allowing them to make corrections if they move
off course and also allowing them to improve over
time with learning.
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Fig. 5.3 Two iBMI users who are part of BrainGate text each other. (Credit: BrainGate Collaboration)
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Fig. 5.4 The components of an iBMI consist of intracortical neural recordings, a decoder to translate the neural input
into a control signal, an output device, and sensory feedback

Building an effective iBMI depends on choos-
ing a brain area for the neural recordings, a de-
coding algorithm, an output device, and feedback
for the desired use. These choices are interrelated.
The most appropriate command signal to control
the output device will depend on the goal of the
task and the particular device being controlled. In

turn, these choices influence whichmotor cortical
area is most appropriate to record from and what
type of signals to record. We will discuss the
considerations related to the neural recordings in
Sect. 5.2.

Once the neural signals have been recorded, a
decoding algorithm (or “decoder”) translates the
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user’s movement intentions into a control signal
suitable for guiding the output device. There are
two classes of BMI decoders: discrete and contin-
uous. A discrete decoder estimates one of several
possible movement goals by solving a classifi-
cation problem. The most common use for this
is a communication device, where patients use
their iBMI to type letters, much as one would if
one were composing a text or an email. Commu-
nication BMIs focus on the speed and accuracy
with which a desired key on a keyboard can be
selected. We will discuss how these devices work
in Sect. 5.3.

A continuous decoder estimates the moment-
by-moment details of a movement trajectory. This
is needed for guiding a computer cursor or robotic
limb along a desired path. For example, a person
maywish to guide a robotic limb to pick up a glass
of milk without knocking over the milk carton.
We will talk about continuous decoders in Sect.
5.4.

The decoder produces a control signal that is
then fed into an output device. There are a variety
of output devices for BMIs depending on the par-
ticular the needs of the user. One common device
is a computer cursor, where a person controls the
cursor by thinking about making a movement,
much as they would control a computer mouse.
Other common output devices for BMI users in-
clude robotic arms and motorized wheelchairs.
Another type of output device is perhaps the most
natural one: the person’s own limb. In Sect. 5.5,
we will talk about recent efforts using electrical
stimulation to directly activate a patient’s muscles
to reanimate their own arm.

The final element of the BMI control loop
is sensory feedback. The most common sensory
feedback is visual: a user can look at the device
they are controlling and see how it is responding,
which allows them tomake correctivemovements
and learn to better control the device. Feedback
has been shown to dramatically improve BMI
performance. Some tasks, however, require more
than just visual feedback to be performed dexter-
ously. Consider putting on a necklace. To fasten
the necklace behind our head, we must rely on
touch to manipulate the necklace clasp. Such
tasks have motivated the inclusion of nonvisual

feedback into BMI systems. Emerging bidirec-
tional technology aims to “close the loop” by
inputting sensory signals conveying naturalistic
proprioceptive or somatosensory information di-
rectly to the nervous system via electrical stim-
ulation. We will discuss recent progress toward
closing the loop with somatosensory feedback in
Sect. 5.6.

5.2 Choosing the Input for iBMIs

The most appropriate control signal for an iBMI
will depend on the goal of the task and the device
being controlled. In turn, these aspects of the
iBMI influence the choice of brain area from
which to record. In this section, we will discuss
the intracortical input signals, the electrodes that
can be used to record these signals, and the motor
neurophysiology that underlies this choice.

5.2.1 Neural Signal Recordings

Intracortical recording techniques provide access
to signals that consist of neural activity, which
can come from individual neurons or groups of
neurons near the electrode. There are three types
of signals that can be recorded with intracortical
electrodes: single-unit activity, multiunit activity,
and local field potentials (LFP). Single-unit ac-
tivity consists of action potentials which emanate
from a single neuron. Multiunit activity consists
of action potentials from a small group of neu-
rons near the electrode tip that are not clearly
discriminable from one another. The LFP signal
is thought to reflect the summation of local neural
activity, mostly changes in membrane potentials,
and is comprised of the activity of perhaps hun-
dreds to thousands of neurons. Single-unit activ-
ity has the most specific information about the
fine details of intended movements, with each
neuron responding uniquely to different aspects
of movement. Multiunit activity and LFPs arise
from averaging over many neurons. Thus, the re-
sulting activity consists of a signal that is common
to the contributing neurons. While multiunit and
LFP signals are correlated with movement, the
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information is not as specific as that obtained
from individual neurons.

Of the three signals, single-unit activity pro-
vides the most specific information about the
fine details of intended movements and has been
shown to lead to good iBMI performance. Single-
unit activity is identified through a process known
as “spike sorting” (Fig. 5.5). The action potentials
recorded with a single electrode can come from
potentially multiple neurons, and in spike sort-
ing, we attempt to classify which action potential
came fromwhich neuron using the neurons’ char-
acteristic waveform shapes. Waveform shapes are
determined by the particular combination of ion
channels expressed by a neuron and the proximity
of that neuron to the recording site and so pro-
vide a “fingerprint” that can be used to uniquely
identify action potentials specific to that neuron.
To identify which action potentials belong to a
given neuron, the recorded voltage trace is typi-
cally first band-pass filtered (e.g., 600Hz–6 kHz).
After that, the waveform snippets are aligned to
the time at which the voltage crosses a prede-
termined threshold. The snippets are then sorted
(i.e., clustered) based on the specific shapes of the
waveforms.

Multiunit activity also leads to good iBMI
performance and does not require the intensive
processing involved in identifying single-unit ac-
tivity. Instead, a voltage threshold is set, and
all waveform snippets that exceed that threshold
(i.e., “threshold crossings,” Fig. 5.5) are counted
with no further assignment to particular neurons.
The type and quality of information that can be
extracted from multiunit activity depend on the
threshold setting, because the threshold impacts
the effective sampling radius of the electrode. A
selective threshold (i.e., a threshold farther from
zero) results in threshold crossings that are likely
due to spikes from individual neurons within a
small sampling radius, close to the electrode,
akin to single-unit activity. A permissive thresh-
old (i.e., a threshold closer to zero) results in
more threshold crossings, because it enlarges the
effective sampling radius of the electrode. The
larger effective sampling radius captures thresh-
old crossings from smaller neurons and neurons

Band Pass Filter
600 - 6,000 Hz

SUA1
SUA2
Noise

Fig. 5.5 Neural signal processing cascade for threshold
crossings (TC) and single-unit activity (SUA). The raw
voltage trace recorded from a single electrode is band-pass
filtered. Then a voltage-based threshold is used to identify
TCs. TCs can be further sorted into activity attributed to a
single neuron or noise based onwaveform shape. (Adapted
from Perel et al. [13])

farther from the electrode than those captured
with a selective threshold.

LFP signals can also be used for iBMIs, but
they do not offer as much specific information
as single- and multiunit activity about the move-
ment. However, LFP signals are not as susceptible
to degradation over time, so there is a trade-
off between resolution and duration in choosing
a neural signal for BMI control. Often, LFPs
can provide an alternative signal if single- and
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multiunit activity is no longer available. LFPs can
be obtained from different band-pass filtering of
the same electrode signal, typically between 0.3
and 300 Hz. Ultimately, the viability of iBMIs
in a clinical setting will depend on the longevity
of the implanted electrodes and their ability to
reliably record signals that are informative about
movement. Using LFP as a secondary input signal
could extend the lifetime of the iBMI.

5.2.2 Multielectrode Arrays

The goal of controlling an output device with
multiple degrees of freedom drove the develop-
ment of multielectrode recording arrays. Record-
ing arrays come in many shapes and sizes and
enable recordings from a large number of neurons
at the same time. Multielectrode arrays are the
primary recording technology used for iBMIs.
Each electrode within the array records from a
small population of neurons close to the elec-
trode tip. There are three main types of multielec-
trode arrays: microwires, flexible polymer-based
microelectrode arrays, and silicon-based arrays.
Microwires are typically made of stainless steel
or platinum–iridium. They can be customized to
include the desired number of electrodes in the
desired configuration and of the desired length.
Flexible arrays are made of polymers that are not
as stiff as microwires and, as such, are a closer
mechanical match to the soft brain tissue into
which they are implanted. This design can lead
to less damage to the tissue, a lower inflammatory
response, and consequently better quality signals.
While microwires and flexible arrays have many
attractive features, they can be fragile. One of
the most popular electrode arrays for iBMIs is a
silicon-based array, the Utah Array (Fig. 5.6). It is
the only array currently approved for clinical tri-
als with human patients by the US Food and Drug
Administration (FDA). It is a silicon-machined
device which permits the simultaneous implanta-
tion of 100 platinum–iridium electrodes in a small
region of cortex (16 mm2). Each electrode array
consists of a silicon base with a 10 × 10 grid
of electrode shanks etched into it. Each electrode

has an impedance of roughly 80–150 k�, and is
separated from its neighbors by 400 μm.

5.2.3 Motor Neurophysiology

Decisions about where to implant multielectrode
arrays and how to design decoding algorithms
to extract movement information are guided by
our understanding of howmovement is controlled
naturally. Let’s consider the multiple processes
involved in picking up a cup for a sip of coffee.
The sight of the coffee cup might inspire a desire
for a sip of coffee, and the desire for coffee is
translated into a plan to reach for the cup. The
hand is then shaped to grasp the cup, and the arm
extends to bring the hand toward the cup. The cup
is then grasped with an appropriate level of force,
and the cup is brought to the mouth. Throughout
this process, visual, tactile, and proprioceptive
feedback are used to adjust the movement to
ensure our actions are successful. For an iBMI
to work as seamlessly as natural movement, we
will likely want to make use of the natural control
signals. For decades, neuroscientists have worked
to understand how the motor cortex produces arm
movements in healthy individuals. Understanding
how movement occurs naturally can inform the
design of technologies like iBMI to improve the
quality of life for individuals with injury or dis-
ease.

Primary motor cortex (M1) has long been
thought to be an ideal location for recording
BMI control signals because it is involved in
generating voluntary movements (Fig. 5.7).
However, other brain areas also have signals
related to aspects of movement. For example,
premotor cortex (PMd) has movement planning
signals, and posterior parietal cortex (PPC) has
been shown to be involved in the transformation
from visual representations of reach goals to the
movement itself. The brain’s “sensory areas”
also often reflect internal representations of
stimuli and movements. Each of these brain
areas is comprised of neurons that modulate their
activity in association with different aspects of
movement. Thus, there are neural signals from
many brain areas that could be used as the input
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Fig. 5.6 The Utah array is a 100-electrode microelectrode array that is commonly used to record neural signals for
iBMIs. (Credit: Utah Array- ©2019 Blackrock Microsystems)
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Fig. 5.7 Lateral (left) and medial (right) views of a human brain with some of the brain areas involved in motor control
highlighted

to an iBMI depending on the type of information
to be extracted and the decoding algorithm.

The desired use of the BMI helps determine
the choice of brain area from which to record
the input signal. Recordings from primary
motor cortex (M1), dorsal and ventral premotor
cortex (PMd and PMv), supplementary motor

area (SMA), posterior parietal cortex (PPC),
and primary somatosensory cortex (S1) can all
contribute information to real-time predictions of
hand position, velocity, grip force, and muscle
activity [5]. However, the different cortical
areas vary in the quality of their predictions
of different aspects of movement. Thus, the
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source of the input signal should be a brain area
which is informative about the desired aspects of
movement.

One way to design a BMI that controls the
movement of a device in a natural way would be
to mimic how the brain controls arm movements.
To do this requires an understanding of how the
brain produces arm movements. However, for the
purposes of a BMI, we can do quite well by
just considering how neural signals are corre-
lated with different aspects of movement. There
is a debate in the field of motor control research
about whether M1 generates arm movements by
directly controlling muscle activity or by signal-
ing aspects of movement like position, velocity,
and acceleration that are then transformed into
muscle activity by downstream neural networks
such as the spinal cord. There is evidence for
both representations, which can be summarized
by the results of two seminal studies. The first
was an experiment performed by Ed Evarts in
awake behaving monkeys [14]. He trained mon-
keys to make wrist flexion and extension move-
ments against opposing or assistive loads while
recording single-neuron activity in M1 and mus-
cle activity (EMG). The experimental design dis-
sociated the movement itself from the force re-
quired to produce it. For example, a given flexion
displacement under an opposing load required
greater activity of the wrist flexor muscles than
under an assistive load. The experimental results
showed that force was reflected in the firing rate
of the M1 neurons he recorded. Thus, activity
in the motor cortex reflects kinetic aspects of
movement, i.e., force or muscle activity.

The second relevant study was an experiment
by Georgopoulos and his colleagues in which
they found that most (75%) of the neurons they
recorded had a firing rate which varied with the
direction of hand movement [15]. Neural sig-
nals in M1 were recorded while a monkey made
reaches from the center of a workspace out to
eight peripheral targets. The relationship between
firing rate and direction looked like a sinusoid and
could be described by the equation

y = b + m cos
(
θ − θ−→

p

)
(5.1)

where y is the firing rate of the neuron, b is its
baseline firing rate (i.e., the mean firing rate),m is
the modulation depth (i.e., the difference in firing
rate between the baseline firing rate and the max-
imum firing rate), θ is the direction of movement,
and θ−→

p is the direction of movement that elicited
the highest firing rate (i.e., the neuron’s preferred
direction). This study showed that, in addition to
reflecting forces and muscle activity, M1 activity
also reflects the direction of arm movement.

Since these experiments, a number of groups
have reported a correlation between M1 firing
rates and various kinematic variables, including
direction and distance of targets, as well as di-
rection, speed, and spatial path of hand displace-
ment. Other groups have found M1 firing rates
to be related to forces and even to muscle activ-
ity. It appears that M1 includes a heterogeneous
representation of both the kinematics and kinetics
of limb movements. The good news, from the
perspective of designing an iBMI, is that either
representation can be exploited as a BMI control
signal, depending on the intended function of the
device. If we can accurately extract information
about the position, velocity, or acceleration of
the desired movement from the neural activity,
that type of control signal can be used to move
the robotic arm. If we can accurately extract in-
formation about muscle activity from the neural
activity, that control signal can be used to drive
muscle stimulators.

The control signal for a BMI output device
could conceivably be any of the aspects of move-
ment with which neural signals are correlated.
Most current BMIs utilize kinematic signals to
control external actuators such as computer cur-
sors or robotic limbs. We can drive robotic limbs
because kinematics (i.e., position and velocity)
can be directly decoded from neural activity and a
kinematic signal could drive the endpoint position
of the limb (see Sects. 5.3 and 5.4). BMIs could
also take advantage of the kinetic (i.e., force-
related) signals in M1. A demonstration of a
kinetic BMI is cortically controlled stimulation
of paralyzed muscles. We can reanimate the arm
because muscle activity can be directly decoded
from neural activity and a kinetic signal could
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control electrical stimulation of paralyzed muscle
tissue (see Sect. 5.5).

The decision about which brain area one
should record from should take into account
which aspects of movement are best suited for the
intended type of control. A kinetic BMI, like one
to control stimulation of muscles, would benefit
from a muscle-like input signal. Such a BMI is
likely to be implanted in M1, which has shown
strong correlations to muscle activity. On the
other hand, a user who will be engaging primarily
in computer cursor control might benefit more
from an implant in an area of the brain that
strongly encodes kinematic signals, such as the
location of movement goals. Activity in premotor
cortex (PMd and PMv; Fig. 5.7) reflects target
positions [16, 17] and could function as the signal
source for a BMI to be used for a communication
interface involving target selection similar to
typing [18]. For endpoint control of a robotic
limb, it would be advantageous to decode a
kinematic signal such as hand position or velocity.
Although this has been most notably done with
signals from M1 [19], areas PMd, SMA, and S1
also contain information about hand position and
velocity [5].

5.3 Intracortical Spelling
Devices

The goal of a communication BMI is to provide a
means of communication for the user. This might
hold particular value for locked-in patients, who
are no longer able to speak. Ideally, we would
record neural signals from the parts of the brain
responsible for speech, decode the intended mes-
sage, and use that to drive a speech synthesizer
or a speech transcription program. However, the
neural encoding of speech is only now beginning
to be understood. Instead, current devices lever-
age our understanding of the neural representa-
tion of intended movements to design spelling
devices through control of an onscreen keyboard.
Users imagine reaching toward the letter they
would like to type. By decoding the intended
movement from motor and premotor cortex, it is
possible to infer which letter the person is trying

to type. Rather than solving the neural encoding
of speech, we only need to solve a classification
problem: of all the letters on the screen, which
character is the person trying to select?

In this section, we will describe classification
decoders, including an example of how to imple-
ment a classifier. We will discuss how to estimate
the model parameters of the classifier and how to
use the resulting classifier in a BMI context.

5.3.1 Classification Decoders

The goal of classification is to take an input and
assign it to one of K discrete classes (Fig. 5.8).
For an iBMI, the input is the spike counts across
a population of neurons (in Fig. 5.8, two neu-
rons are illustrated). We ask which of K discrete
movements most likely corresponds to the user’s
intended movement. To begin, we need labeled
training data. For example, we could record a
user’s neural activity while he or she imagines
reaching to various letters displayed like keys on
a keyboard, as instructed by the experimenter. As
shown in Fig. 5.8a, the training data consists of
the class label (i.e., the imagined letter, depicted
as different colors) and the value of each data
point (i.e., the activity of two neurons, y1 and y2).
In the training phase, we fit a probability model
to the training data, a process we will describe
in detail below. This training phase defines a set
of decision boundaries between the classes (Fig.
5.8b). Once the classifier has been trained, we can
then use the classifier to predict the label of a new
data point (Fig. 5.8c). We do this by comparing
where the data point falls relative to the classi-
fier’s decision boundaries. In the example shown
in Fig. 5.8c, the new data point would be assigned
to class 3.

Before we describe how a classifier works in
detail, let’s start with a simplified example to
build intuition. In this example, the iBMI user is
typing one of three different letters, either “E,”
“Q,” or “A,” while we record activity from a
single neuron (y). First, we ask the user to re-
peatedly imagine reaching to the letter “E” while
we record the neuron’s spiking activity. Because
neurons are noisy, the neuron’s spike counts will
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Fig. 5.8 (a) To train a classifier, we collect a set of labeled
training data, consisting of a set of data points where each
data point consists of values, y1 and y2, along with their
corresponding class labels, depicted here as the color of
each data point. (b) The classifier uses the training data to
create a set of decision boundaries (black lines) that divide

the different classes of data points into different regions.
(c) Given a new data point (open circle) for which we do
not know the true class label, the classifier will predict the
class of that new data point using its decision boundaries.
In this case, the new data point would be assigned to class
3

not be exactly the same every time (Fig. 5.9a).
Instead, we obtain a distribution that reflects the
conditional probability of measuring a particular
spike count given that the person is intending to
reach to the letter “E” (Fig. 5.9b), here idealized
as a Gaussian distribution. We can repeat this
process for the letter “Q” and again for the third
letter, “A.”

How can we use this spiking activity to build a
classifier that will classify the letter a user intends
from only the neural activity? First, let’s suppose
the neuron spiked 30 times. We would probably
guess that the user was intending to reach to the
“A” because that is the letter that is the most prob-
able for that spike count. Similarly, if the neuron
spiked five times, by comparing the probability
distributions, wewould guess that the user was in-
tending to reach to the “E.” In general, we would
like our classifier to predict the most likely letter
given the recorded spike counts by comparing
the measurement to the conditional distributions
of the neural activity. If we recorded 20 spikes,
what letter would we guess the user intended?
This time it is not obvious because intending
to reach to either the “Q” or the “A” would be
equally likely to generate that measurement. Now
suppose we repeated this exercise for a second
neuron. Neuron 2 will also have spike counts
for which the classification will be unambiguous
and spike counts for which the classification is

ambiguous. In general, the range of ambiguous
spike counts of the two neurons will not overlap
because neurons have different preferred stimuli.
Thus, adding even just one more neuron will
likely enable our classifier to make a more ac-
curate guess about the intended letter. Similar
to the single-neuron example, we can estimate
the distribution of spike counts of two (or more)
neurons conditioned on the user’s intentions to
select each of the three letters (Fig. 5.9c). Now,
the distribution of spike counts corresponding to
each letter is a region in a plane (for two neurons)
or in an N-dimensional space for N neurons. This
looks very much like the scenario depicted in Fig.
5.8 for which classifiers are designed.

Now that we have established some intuition,
let’s talk about how to implement the classifier
using a probability model. Here we’ll suppose
that the user is typing one of K different letters,
which we’ll refer to as c1, c2, . . . , cK . (In the
above example, we had K = 3, with c1 = “E,”
c2 = “Q,” and c3 = “A”). While the user is
intending to type these different letters, we record
the spike counts, y ∈ Rd, from d different neurons.
To build the classifier, we would like to be able to
predict which letter, ck, the user was most likely
intending just from observing the neural activity,
y. In other words, we want to know P(ck | y).
What our training data provides, however, is the
reverse: the distribution of spike counts given the
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Fig. 5.9 (a) A user imagines typing the letter “E” many
times while neural activity is recorded from one neuron.
We can plot the neural activity across time as a raster plot,
in which each row is a trial and each mark represents the
time of a spike occurred. We count the spikes occurring
within a given window (black box) and repeat this process
for other letters (e.g., “Q” and “A”). (b) We can plot the
conditional distribution of spike counts we recorded given
that the user imagined typing the letter “E” (red), “Q”
(black), or “A” (blue). For each letter, we will likely see

a different distribution of spike counts, here idealized as
Gaussians. (c) If we record from a second neuron’s spike
counts simultaneously, we can plot the joint distribution
of spike counts in both neurons for each letter. For each
set of spike counts, we can fit a multivariate Gaussian
to the data by estimating the mean (unfilled circle) and
covariance (ellipse). Adding additional neurons will likely
improve our ability to discriminate which letter the user
was imagining

intended letter,P(y | ck). Additionally, becausewe
know the true letters the user was intending in the
training data, we also know P(ck), the proportion
of data points with a given class label. We can
relate all of these terms using Bayes’ rule:

P (ck|y) = P (y|ck )P ( ck)

P (y)
(5.2)

To predict the letter the subject was intending
given the neural activity y, we will simply choose
the class (k) that has the largest value of P(ck |
y). This is similar to how in our single-neuron
example, we chose the letter that had the highest
probability in Fig. 5.9b. To write this mathemati-

cally, given y, the classifier will predict the class
as follows:

k̂ = argmax
k

P (ck|y) = argmax
k

P (y|ck) P (ck)

P (y)

(5.3)

We can ignore the denominator in Eq. 5.3 because
P(y) is the same for every class k, so it does not
affect which k yields the maximum.

Equation 5.3 tells us how we can predict the
letter the user was most likely intending, given
only the spiking activity, y. The right-hand side of
the equation includes two terms: the conditional
probability of spiking given the intended letter,
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P(y| ck), and the prior probability of each letter,
P(ck). We now discuss how we can use our train-
ing data to estimate these two quantities.

Let’s begin by discussing the first term. What
we would like is to use the training data to de-
scribe the distribution of neural activity observed
for each letter. In Fig. 5.9b, c, we note that a Gaus-
sian captures the first and second moments (i.e.,
mean and covariance) of the distribution of neural
activity. This means when the user is intending a
particular letter (e.g., ck = “E”), the distribution
of observed spike counts (y) can be described by
a Gaussian with a mean and covariance:

P (y|ck) = N (μk, Σk) (5.4)

where y ∈ Rd is a vector of spike counts from
a population of d neurons, μk describes their
mean spike counts, and the covariance matrix �k

describes any correlations that might exist among
neurons. To estimate these mean and covariance
parameters, we seek to find the parameters μk

and �k that maximize the probability of hav-
ing observed the activity that we observed. This
widely used procedure is known as maximum
likelihood estimation (MLE). Let’s suppose we
have N examples (or trials) of recorded neural ac-
tivity, {y1, . . . , yN} when the user was imagining
typing the same letter ck. Then the probability of
recording a particular yi (i.e., on a single trial) is

P (yi |ck) = (2π)−d/2|Σk |−1/2e−(yi−μk)
�Σk

−1(yi−μk)/2

(5.5)

Assuming the neural activity recorded across
trials is conditionally independent, the probability
of observing {y1, . . . , yN} is the product of ob-
serving each individual trial:

P (y1, . . . , yN |ck) =
∏N

i=1
(2π)−d/2|Σk|−1/2·

e−(yi−μk)
�Σk

−1(yi−μk)/2

(5.6)

This joint probability indicates the “likeli-
hood” of observing the spike counts given that
the true parameters were μk and �k. For this, we
write

L
(
μk, Σk; y1, . . . , yN,ck

) = P (y1, . . . , yN |ck)

(5.7)

The approach of maximum likelihood estimation
is to choose the parameters most consistent with
the observed data. In other words, we will choose
the parameters that maximize the probability of
the neural activity that we observed:

μk, Σk = argmax
μ,Σ

L (μ, Σ; y1, . . . , yN, ck)

(5.8)

By maximizing the log likelihood function for
each class k, we can find μk, �k for each of the
distributions P(y| ck). We would find (with a few
lines of math, omitted here) that the parameters
μk, �k are the sample mean and sample covari-
ance of the spike counts recorded with class k:

μk = 1

N

∑N

i=1
yi (5.9)

Σk = 1

N

∑N

i=1
(yi − μk) (yi − μk)

� (5.10)

If we had assumed that the covariance of neu-
ral activity was the same across classes (i.e.,
�1 = �2 = . . . = �k), it can be shown that
the resulting decision boundaries between classes
are linear, as shown in Fig. 5.8c. As a variant of
this Gaussian classifier, we could instead describe
the distributions of neural activity P(y| ck) using a
Poisson distribution and perform the same MLE
procedure to estimate its parameters.

The other term we need to know in order
to implement the classifier is P(ck), the prior
probability of each class. This is the probability
that a user is likely to want to type each letter
without having observed any neural activity. For
example, in the English language, “E” is a much
more common letter than “Q,” which means we
should expect to observe “E” more often than
“Q.” Or, imagine that instead of typing letters,
the goal was to select among different icons on
a computer screen. It might be that each icon is
expected to get the same amount of use. In this
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case, P(ck) = 1/K for each k = 1, . . . , K. Using
Bayes’ rule, the classifier accounts for the prior
probability when making its predictions (see Eqs.
5.2 and 5.3).

As an example of using a classification de-
coder in a BMI setting, researchers recorded neu-
ral activity from premotor cortex in monkeys
to predict the intended reach target from neural
activity while a monkey planned a reach [20]. The
researchers assumed that neurons were Poisson
and conditionally independent of one another.
They then decoded themost likely target given the
observed neural activity using a method similar
to the approach described above. In this case, the
monkey made arm reaches to each of eight targets
that were equally likely by design. The classifier
successfully decoded the correct target from the
neural activity on 90% of the trials. This work
was the first demonstration that neural activity
recorded during the movement planning period
could be decoded as a useful control signal for
a classification iBMI.

Performance of classification decoders is as-
sessed based on the speed and accuracy of target
selection. In general, fast and accurate classifica-
tion is difficult because neural activity is variable
(cf. Fig 5.9a). The approach is to average the neu-
ral activity over a longer window of time. Because
neural variability is Poisson-like, averaging over a
longer window reduces the “noise” and results in
a more accurate prediction of the target. However,
with longer time windows, fewer predictions are
made each second, resulting in slower decoding.
There is a speed accuracy trade-off that makes the
choice of the particular duration and placement of
the time window an important design choice.

Rather than evaluating BMI performance on
accuracy alone, one should include somemeasure
of speed as well. One metric that is often used
for this purpose is the information transfer rate
(ITR; [18]). ITRmeasures howmuch information
is conveyed per unit time. ITR increases with
window duration but then decreases (Fig. 5.10).
This is because ITR takes into account both how
accurately and how quickly each target is se-
lected. Accuracy fails to increase rapidly enough
to overcome the slowdown in target selection rate
with longer window durations. An intracortical
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Fig. 5.10 The relationship between single-trial decod-
ing accuracy and information transfer rate (ITR). Per-
formance was measured during iBMI experiments for a
four-target configuration and an eight-target configuration
across varying trial lengths. Each data point represents
performance calculated from one experiment (hundreds of
trials). (Adapted from Santhanam et al. [18])

classification decoder can convey 6.5 bits per
second or 2–3 targets per second with greater
than 90% accuracy. This would allow users to
type at a speed of 15 words per minute. While
this is an improvement over noninvasive BMIs,
this is not yet up to the average typing speed
of 40 words per minute. State-of-the-art commu-
nication BMIs, such as the one shown in Fig.
5.3, combine discrete and continuous decoders.
We will discuss continuous decoders in the next
section.

5.4 Intracortical Control
of Continuous Effectors

In the spelling device, and in classification de-
coders in general, we decode the intended target
(or letter) directly from the neural activity. How-
ever, if we want to control a robotic arm, we need
to specify the path that the arm will take so that,
for example, the user can prevent the arm from
bumping into objects in theworkspace. To specify
the reach trajectory, we need to decode the evolu-
tion of the desired movement at progressive time
steps. In other words, we need a continuous de-
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coder. Accurate decoding of a continuous control
signal is necessary for controlling not only robotic
arms but also computer cursors or a patient’s
own paralyzed limb. In this section, we discuss
three continuous decoders for BMI control: the
population vector algorithm, the optimal linear
estimator, and the Kalman filter. Variations on the
Kalman filter are the current state of the art for
continuous decoders.

5.4.1 Population Vector Algorithm

One of the first continuous decoders was the
population vector algorithm (PVA). The PVA
was proposed by Apostolos Georgopoulos in
the 1980s as a way of decoding movement
direction from a population of neurons. As
mentioned in Sect. 5.2, the firing rates of
neurons in motor cortex reflect the direction of a
reach, as the relationship between a neuron’s
firing rate and the arm’s reach direction is
approximately cosine tuned (Fig. 5.11). This
means that there is a reach direction for which the
neuron fires maximally. We refer to this direction
as the neuron’s “preferred direction,” θ−→

p . The
neuron’s firing rate decreases gradually as the
reach direction moves away from this preferred
direction. Different neurons have different
preferred directions, so together the activity of
a population of neurons can uniquely specify the
arm’s direction of movement. Specifically, when
the arm is moving in a particular direction, θ , we
can describe the firing rate, y, of one neuron as
shown in Eq. 5.1. The firing rate is linearly related
to cos

(
θ − θ−→

p

)
, and this relationship is the basis

of PVA. In motor cortex, studies have used cosine
tuning to describe movement direction, velocity,
speed, position, force, and torque. Cosine tuning
has also been used to describe neural activity in
other nonmotor brain areas.

The fact that a neuron’s firing rate has a sys-
tematic relationship with reach direction suggests
that we can accurately decode a subject’s in-
tended reach direction from the activity of a single
neuron. However, it is not easy to estimate di-
rection of movement from one cosine-tuned neu-
ron because there are multiple reach directions

associated with a given firing rate. In Fig. 5.11,
suppose that the neuron is firing at 30 spikes
per second. This could correspond to the subject
reaching at 0◦ (yellow) or 135◦ (cyan). As we saw
in the classification example above, the activity
of just one neuron can be ambiguous, but we can
solve this problem by recording from a population
of neurons in order to reduce uncertainty in our
estimate of the reach direction.

As its name suggests, the population vector
algorithm (PVA) utilizes the activity of a popula-
tion of neurons to estimate the desired movement.
Each neuron contributes a “push” in the direction
of its preferred direction. This push is weighted
by the neuron’s normalized firing rate, given by
wi = yi−bi

mi
, where yi is the measured firing rate

of neuron i, bi is the neuron’s baseline firing rate,
andmi is its modulation depth. The algorithm then
averages all of the neurons’ contributions together
to yield the resulting command. Mathematically,
the PVA decoder is a weighted vector sum of
each of the recorded neurons. Taken together, the
prediction of the intended movement direction is
the resulting population vector.

Figure 5.12 shows a simple example of the
PVA using two neurons at one time point. Each
of the neurons has a different preferred direc-
tion (Fig. 5.12a). The preferred direction of the
neuron determines the direction of its push. The
red neuron will push “up,” while the blue neuron
will push “left” (Fig. 5.12b). The measured firing
rates determine the magnitude of the pushes (Fig.
5.12c). Let’s consider the firing rates specified by
the gray shaded box. The red neuron has a firing
rate of yred = 25 spikes per second. Given that this
neuron’s tuning parameters are bred = 35 spikes
per second and mred = 15 spikes per second,
the magnitude of the red neuron’s push is then
wred = − 0.66. This contribution is negative, so
its push is now “down.” Let’s repeat this process
for the blue neuron. The blue neuron has a firing
rate yblue = 45 spikes per second. Given that this
neuron’s tuning parameters are bblue = 35 spikes
per second and mblue = 15 spikes per second,
the magnitude of the blue neuron’s push is then
wblue = 0.66. This contribution is positive, so its
push stays “left.” Taking the weighted sum of the
two pushes, the population vector points down
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Fig. 5.12 A two-neuron example of the population vector
algorithm. (a) Tuning curves of the two neurons (red
and blue). (b) Each neuron contributes a push in the
direction of its preferred direction. (c) The magnitude of

each neuron’s push is determined by its firing rate. (d)
The population vector algorithm outputs a resultant vector
represented by the black arrow that is the weighted sum of
each neuron’s push

and to the left, corresponding to a movement of
around 225◦ (Fig. 5.12d). This procedure repeats
at each time point, as the activity of the neurons
varies over time.

In a BMI use scenario, the goal is to record
neural activity from a population of neurons and
convert it into the position of a cursor on a screen
over time. In contrast to the classification de-
coders of the previous section, here we decode
the cursor position at each point in time. This
provides the user with continuous control over the
trajectory that the cursor takes.

The PVA is a biologically inspired decoder,
where the idea is that perhaps neurons in mo-

tor cortex cause slight contractions of muscles
that push the arm in their preferred directions.
However, PVA suffers from statistical biases: if
there is a nonuniform distribution of preferred
directions in the recorded neural population, the
PVAwill systematically misestimate the intended
reach direction. In practice, it is rare to record a
population of neurons with a uniform distribution
of preferred directions. While this bias can be
mitigated by recording from a large number of
neurons or by sub-selecting neurons that have
a uniform distribution of preferred directions, a
better approach is to use an unbiased decoding
algorithm. The optimal linear estimator and the
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Kalman filter, both of which we will discuss
shortly, are examples of unbiased decoders.

5.4.2 Optimal Linear Estimator

As discussed above, if we do not have a uniform
distribution of preferred directions, we do not
want to use a PVA decoder. Instead, we should
specify a statistical model that describes the re-
lationship between the intended movement and
the activity of each neuron. This encodingmodel,
a probabilistic description of how neural activity
(y) varies based on the intended movement (x),
is written as P(y|x). The encoding model has
parameters which are estimated during a decoder
calibration phase. Applying Bayes’ rule, we can
then use this encoding model to create a decod-
ing model, P(x|y), which is our estimate of the
intended movement given the observed neural
activity.

An example of an unbiased continuous de-
coder is the optimal linear estimator (OLE). The
OLE makes two assumptions: that firing rates
are linearly related to intended movement and
that neural variability is described by a Gaussian
distribution. We can rewrite the cosine tuning
model in matrix form:

yt = b0 + Bvt + εt , εt ∼ N (0, Σ) , (5.11)

where yt is the n × 1 vector of firing rates from n
neurons, b0 is the n × 1 vector of baseline firing
rates, B is the n × 2 matrix of tuning coefficients,
vt is the 2× 1 intended velocity, and εt is the n× 1
noise vector.

We can now ask a question that is very similar
to the classification problem we solved in Sect.
5.3: What is the most likely velocity given a
measurement of firing rates from our population?
From our encoding model (Eq. 5.11), we know
the probability of the firing rates given the in-
tended movement direction:

P (yt | vt ) = (2π)−k/2|Σ |−1/2

exp

(
−1

2
(yt − Bvt − b0)

�Σ−1(yt − Bvt − b0)

)

(5.12)

In theOLE, our estimate of velocity is the velocity
that maximizes the above probability with respect
to the observed neural activity. This velocity is

v̂t = (
BT Σ−1B

)−1
BT Σ−1 (yt − b0) (5.13)

Note that this estimate of velocity is a linear
function of the recorded firing rates. Further, the
OLE decoder corrects for any nonuniformity in
the distribution of preferred directions, resulting
in an unbiased estimate of intended velocity. This
is why this decoder is called the optimal linear
estimator.

Which decoder should we implement, a PVA
decoder or an OLE decoder? The PVA decoder is
simpler than statistical approaches like OLE, but
the OLE decoder is optimal given the specified
encoding model. Empirically, if we were to use
each decoder to reconstruct arm trajectories, we
would see that OLE performs significantly better
than PVA and with fewer neurons [21]. However,
both decoders do comparably well in a BMI use
scenario because the users can incorporate feed-
back and correct errors quickly enough to com-
pensate for any theoretical differences in system
performance.

5.4.3 Kalman Filter

Is it possible to do even better? Both PVA and
OLE estimate movement velocity given only the
neural activity. But there is other information we
could also incorporate into our estimates. For
instance, we know that the cursor or arm should
move smoothly. During arm reaches, the arm can-
not teleport from one location to another instanta-
neously. Rather, there are finite constraints to the
accelerations and decelerations that muscles can
produce. We can use this information about the
kinematics of the arm during natural reaching to
influence how we allow our estimate of the de-
sired trajectory to change with time. As a simple
example, if we know where the arm is currently
(current state), and how fast the arm is moving
(state dynamics), we can predict where the arm
will go next (future state). To use this information
to improve our ability to decode arm velocity, we
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need to combine it with the information we have
from the neural activity.

Consider trying to track a satellite. What
sources of information might we use to do so?
We could simply measure its position. But what
if it goes behind a cloud or over a region of
Earth with no sensors? We could potentially use
Newton’s laws to predict the satellite’s trajectory.
But what if something collides with our satellite
and changes its course? Intuitively, the best way
to track a satellite would be to combine our
measurements and our predictions, weighting
each source of information according to how
reliable it tends to be.

These are the intuitions captured by the
Kalman filter: it predicts the current state of a
system based on our estimate at the previous state
combined with new observations of data. The
two key components of a Kalman filter are a state
model that describes how the movement evolves
over time and an observationmodel that describes
how the observations relate to the movement. The
way the state and observation models combine
can be visualized graphically as in Fig. 5.13, with
the red arrows indicating the state model and the
black arrows indicating the observation model.

We outline below how these two models are
combined to update our predictions at each time
step t. The Kalman filter is based on linear-
Gaussian relationships. First, we define the
observation model:

xt-2 xt-1 xt

yt-2 yt-1 yt

Fig. 5.13 Graphical model of a Kalman filter. Each verti-
cal slice represents a time step. The nodes in red represent
the state (e.g., movement velocity), while the nodes in blue
represent the observations (e.g., spike counts). Each arrow
represents a probabilistic relationship between the nodes

yt = Bxt + εt , εt ∼ N (0, Σ) (5.14)

where yt ∈ Rn × 1 is the vector of spike counts
measured from all n neurons at time step t,
B ∈ Rn × d is the matrix of tuning coefficients,
xt ∈ Rd × 1 is the vector of the intended movement
kinematics (e.g., cursor velocity) at time step t, d
is the number of kinematic variables (e.g., d = 2
for a two-dimensional velocity), and εt ∈ Rn × 1 is
the vector of additive Gaussian noise, drawn from
a distribution with mean 0 and covariance matrix
� ∈ Rn × n. Note that this is the same observation
model that the OLE uses (Eq. 5.11), with two
exceptions. First, we have assumed that the
baseline, b0 from Eq. 5.11, is already subtracted
from the spike counts. This just simplifies the
derivations below. Second, we denote the state
as x instead of v, as it is common to incorporate
other kinematic variables in addition to velocity,
such as the position and acceleration, in a Kalman
filter. Though for simplicity, we will assume that
x contains only velocity in what follows.

The state model is defined as

xt = Axt−1 + ωt, ωt ∼ N (0, Q) (5.15)

where A ∈ Rd × d describes how the velocity
evolves from one time step to the next, ωt ∈ Rd × 1

is additive Gaussian noise to the velocity, and
Q ∈ Rd × d is the covariance matrix of the velocity
noise. Notice how in the observation model (Eq.
5.14), the current state is linearly related to the
observed neural activity and in the state model
(Eq. 5.15), the state at time t is linearly related to
the state at time t − 1.

To calibrate the decoder, we estimate the pa-
rameters B, �, A, and Q in the observation and
state models. Typically, in a decoder calibration
session, the neural activity is recorded, while the
states of the arm or cursor are known. This can
be done in a number of ways. Some decoders
are calibrated based on arm movements. Other
decoders are calibrated by moving a cursor on the
screen and having the user intend or imagine that
they are moving the cursor. In this way, the state
of the cursor is known or assumed during decoder
calibration. Because Eqs. 5.14 and 5.15 are linear-
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Gaussian, when both the states and neural activity
are known, we can find the parameters using
multivariate linear regression on the calibration
data. We leave the derivation of the equations
for the parameters from the observation and state
models to homework problem #7.

How do we use these models to decode move-
ment trajectories from neural activity for a BMI?
What we would like to know is P(xt| y1, . . . , yt),
which describes the probability of the intended
movement velocity at a particular time step given
all of the recorded neural activity up to that time
step. The decoded movement is the movement
that maximizes this probability.

To decode the movement velocity at all time
steps, we will compute P(xt| y1, . . . , yt) sequen-
tially starting from t = 1. In order to do this, we
will first need to find P(xt| y1, . . . , yt − 1). This is
called a “one-step prediction” and can be found
from the previous time step and the state model
as follows:

P (xt |y1, . . . , yt−1)

=
∫

P (xt |xt−1) P (xt−1|y1, . . . , yt−1) dxt−1

(5.16)

This equation describes our current estimate
of the movement velocity at time t given all of
our observations up to time t − 1, along with
our knowledge of how the movement kinematics
evolve over time. That is, it’s a prediction of
where the state may have gone since our last
measurement. We then augment this prediction
with a “measurement update” that describes how
this prediction changes when we observe yt:

P (xt |y1, . . . , yt ) = P (yt |xt ) P (xt |y1, . . . , yt−1)

P (yt |y1, . . . , yt−1)

(5.17)

The one-step prediction and measurement
update (Eqs. 5.16 and 5.17) are general. They can
be used for any state and observation model
as long as the graphical model is as shown
in Fig. 5.13.

For the particular state and observation models
defined in our example (Eqs. 5.14 and 5.15), we
can simplify Eqs. 5.16 and 5.17. Because the
relationships in our state and observation models
(Eqs. 5.14 and 5.15) are linear-Gaussian, this
means that all of the relevant marginal, condi-
tional, and joint distributions are also Gaussian.
Thus, all we need to do is compute the mean and
covariance of each distribution.

We start with the state estimate at the
previous time step t − 1, P(xt − 1| y1, . . . , yt − 1).
Let its mean and covariance be μt − 1 and
Φ t − 1, respectively. The mean and covari-
ance of the one-step prediction distribution
are μ−

t = E [xt |y1, . . . , yt−1] and 
−
t =

Var [xt |y1, . . . , yt−1]. We can solve for these by
plugging the state model into Eq. 5.16:

μ−
t =AE [xt−1|y1, . . . , yt−1]

+ E [ωt |y1, . . . , yt−1] = Aμt−1

(5.18)

Similarly, for the covariance:


−
t = Var [Axt−1 + ωt |y1, . . . , yt−1]

= A
t−1A
T + Q

(5.19)

In the measurement update, we use the new
observation yt to update the one-step prediction to
compute the state estimate at the current time step
t, P(xt| y1, . . . , yt). Let its mean and covariance be
μt and Φ t, respectively. To compute μt and Φ t,
we first obtain the joint distribution of xt and yt
given y1, . . . , yt − 1. Using the one-step prediction
and the observation model, we find:

[
yt | y1, . . . , yt−1

xt | y1, . . . , yt−1

]

∼ N

([
Bμ−

t

μ−
t

]
,

[
B
−

t BT + Σ


−
t BT

B
−
t


−
t

])

(5.20)

Then, using the theorem of conditioning for
jointly Gaussian random variables, we can solve
for
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μt = μ−
t + Kt

(
yt − Bμ−

t

)
(5.21)


t = (I − KtB)
−
t (5.22)

where the Kalman gain Kt is the d × n matrix:

Kt = 
−
t BT

(
B
−

t BT + Σ
)−1

(5.23)

The Kalman gain indicates how much the mea-
surement influences the update. When the uncer-
tainty in the measurement is large compared to
uncertainty in the state estimate, the Kalman gain
is small. On the other hand, when uncertainty
in the measurement is small compared to uncer-
tainty in the state estimate, the Kalman gain is
large.

To summarize, we implement the Kalman fil-
ter by iterating between the one-step prediction
(Eqs. 5.18 and 5.19) and the measurement update
(Eqs. 5.21 and 5.22) for time steps t = 1, . . . ,
T. Using this procedure, we obtain the estimated
kinematics μt that is used to move the computer

cursor or robotic limb at each time step t. Φ t Is
the uncertainty around that estimate. These steps
are illustrated in Fig. 5.14.

The Kalman filter and OLE have advantages
over methods such as PVA because their
assumptions are made explicitly and they provide
an uncertainty around the state estimate. Having
explicit assumptions means that we can easily
change our assumptions and derive a different
continuous decoder. In practice, the leading iBMI
decoders in the field today are variants of the
Kalman filter.

An example of a high-performance closed-
loop iBMI [22] using a Kalman filter is illustrated
in Fig. 5.15. This approach involved two key
modifications to the basic Kalman filter. First, the
experimenters assumed that the user intended to
produce velocities straight to the instructed target
at every time step, rather than produce the cursor
velocities that were actually decoded (red vectors
in Fig. 5.15) following the original calibration.
They used this information to improve the de-

BA C

D E

N(μt-1, Φt-1)

xt-1 | y1, ..., yt-1~ N(μt-1, Φt-1)

xt | y1, ..., yt~ N(μt, Φt)

P(yt | xt) P(yt | xt)

N(μt, Φt)

target

previous state one-step prediction

measurement
 update

new observation

BMI cursor
(xt = velocity)

time t-1

time t
N(μt, Φt)

N(μt, Φt) N(μt, Φt)

BMI user’s workspace

Fig. 5.14 Implementing a Kalman filter. (a) At each time
step t, we update the cursor’s position (black circles) by
adding to it the cursor velocity, xt, which we estimate
using a Kalman filter (panels b–e). (b) At time step t − 1,
we have an estimate of the previous state of the cursor
velocity, a Gaussian with mean μt − 1 (pink dot), and a
covariance 
t − 1 (pink ellipse). (c) At time step t, we
first update the estimated velocity distribution using our
Kalman state model, according to the one-step predic-

tion. (d) When we observe a new measurement of neural
activity, yt, the Kalman observation model provides us
with additional information about the likelihood of the
intended cursor velocity. (e) In the final step, we use
the measurement update to combine the two sources of
information about cursor velocity to arrive at our final
estimate of the cursor velocity μt, which is then used to
update the position of the cursor in panel a
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Observed cursor kinematics

BMI user’s workspace

ReFIT estimated cursor kinematics

target

BMI
cursor

target

BMI
cursor

t=1

t=2

t=3

t=4

Fig. 5.15 Top: A series of cursor positions (black circles)
and cursor velocities (red vectors) from an example trial on
which the user was trying to navigate a cursor toward the
target (yellow circle). Axes are the horizontal and vertical
position in the BMI user’s workspace (e.g., as seen on a
computer screen). Bottom: Decoding with a Kalman filter
can be improved by assuming that the user was trying
to produce a velocity straight to the instructed target at
every time step. Rather than calibrating the decoder on
the observed cursor kinematics (red vectors), the assumed
kinematics are obtained by rotating the observed velocities
toward the instructed target (purple vectors). The estimate
of intended kinematics is regressed against neural activity
to obtain the parameters of the ReFIT-KF

coder by rotating the decoded cursor velocities
to point toward the target (purple arrows in Fig.
5.15) and using the resulting velocities in a sec-
ond round of calibration. This requires knowledge
of the intended target during the decoder calibra-
tion phase. The second change was a causal inter-
vention in which the feedback the user received
about the cursor position was taken to be known
with no uncertainty. Doing so meant that the
user’s estimate and the algorithm’s estimate of the
cursor position were the same, effectively remov-
ing the uncertainty in the cursor position. Taking
these changes together, they called their extension
of the Kalman filter the recalibrated feedback

intention-trained Kalman filter or ReFIT-KF [22].
Compared to a standard-velocity Kalman filter,
the ReFIT-KF increased performance by reducing
the time required to move a computer cursor to hit
a target. The ReFIT-KF is currently being used in
clinical trials (Fig. 5.3).

5.5 Reanimating Paralyzed
Limbs

Our vision is that one day paralyzed people will
walk, shake hands, interact with objects, and
overall behave in a manner that is virtually
indistinguishable from healthy individuals.
Although this goal is far from realized, ongoing
research is promising. Consider the development
of the pacemaker over the past 50 years. The
original pacemaker recipient was confined to
a wheelchair due to the extensive externalized
devices and required daily maintenance from
trained care givers. With the assistance of
the pacemaker, he lived another 43 years and
passed away at 86 from causes unrelated to his
heart. These days one would be hard-pressed to
determine who has a pacemaker and who does
not without an X-ray machine. We anticipate a
similar development for iBMI systems.

Most current iBMIs decode kinematic control
signals, such as desired velocity, in order to con-
trol a computer cursor or a robotic arm. As an
output device, robotic arms are most appropriate
for amputees, but many potential iBMI users have
intact limbs. If we could decode desired muscle
activity directly from the brain, we could use
functional electrical stimulation (FES) to directly
activate a patient’s muscles to reanimate their
own limbs. This would allow a person with paral-
ysis to regain the ability to interact with the world
with their own limbs. Although FES applications
have been developed for upper and lower ex-
tremity function, bowel and bladder control, and
respiratory function, here we will focus on FES
for grasping. In this section, we will describe
how to decode desired muscle activity and how
to deliver electrical stimulation to the muscles in
order to match that desired activity.
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5.5.1 Functional Electrical
Stimulation

Functional electrical stimulation (FES) is
neuromuscular stimulation used to restore motor
function to paralyzed limbs. This is possible
because neurons are electrically excitable. There
is an electric potential maintained across the cell
membrane. Physiologically, synaptic inputs to a
neuron cause a change in the membrane potential,
and action potentials are generated when the
membrane is depolarized past a certain threshold.
Electrical stimulation can artificially depolarize
the membrane in a similar way to generate action
potentials.

FES electrically stimulates the neurons that
are responsible for generating movement, called
alpha motor neurons. Alpha motor neurons com-

municate directly with muscles and are ultimately
responsible for generatingmovement. They cause
muscle contractions by releasing the neurotrans-
mitter acetylcholine at the synapse of the alpha
motor neuron onto skeletal muscle. This synapse
is termed the neuromuscular junction. Acetyl-
choline binds to receptors on the muscle fiber
and generates a muscular action potential that
causes the muscle to contract. Although the mus-
cle tissue itself is electrically excitable, most FES
systems target the alpha motor neurons because
they require less current to generate action po-
tentials than activating the muscle fibers directly
(Fig. 5.16). Thus, FES requires the alpha motor
neuron to be intact and the neuromuscular junc-
tion andmuscle to be healthy. These requirements
exclude patients with polio, amyotrophic lateral
sclerosis, peripheral nerve injuries, and muscular

M1

Alpha Motor
Neuron

Corticospinal
Tract

Spinal Cord

Muscle

X
Damage in 

patients with SCI

FES device

Fig. 5.16 Many neurons in M1 extend down the corti-
cospinal tract in the spinal cord and synapse either directly
onto alpha motor neurons or onto interneurons that in turn
synapse onto alpha motor neurons. Alpha motor neurons
synapse onto muscle fibers at a specialized contact known

as the neuromuscular junction. Spinal cord injury (SCI)
interrupts the connection between M1 and the muscles.
Functional electrical stimulation (FES) artificially gener-
ates action potentials at the alpha motor neuron to generate
movement in people who are otherwise paralyzed
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dystrophies. Patients who can benefit from FES
include those with spinal cord injury, stroke, head
injuries, cerebral palsy, or multiple sclerosis.

A single alpha motor neuron makes synapses
onto several (10–100) muscle fibers. These mus-
cle fibers are driven only by that single mo-
tor neuron. Small motor neurons innervate slow-
twitch, fatigue-resistant muscle fibers that pro-
duce low forces. Large motor neurons innervate
fast-twitch, fatigable muscle fibers that produce
large forces. Together, a motor neuron and the
muscle fibers it innervates are known as a motor
unit.

5.5.2 FES Systems

An FES system consists of a controller,
electrodes, and a stimulator. The controller
regulates the timing and intensity of the delivered
stimulation. Stimulation is delivered in the
form of pulses of current with waveform
patterns such as a square wave or a sine
wave. These waveform patterns are described
by their frequency, duration, and amplitude
(Fig. 5.17). Frequency refers to the number
of pulses per second. For FES applications,
typically low frequencies are used to produce
a smooth contraction at low force levels while
minimizing muscle fatigue. The time span of
a single pulse is the pulse duration or width.
Increasing pulse duration tends to recruit more
motor units. Stimulation amplitude describes
the strength of the current applied. The higher

pulse 
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Fig. 5.17 Square pulse waveform

the amplitude, the stronger the depolarizing
effect. This recruits more neurons and results
in a stronger muscle contraction. Adjusting these
parameters changes the strength of the evoked
muscle contraction. Regardless of the particular
parameters, FES stimulation typically consists of
biphasic, charge-balanced pulses (i.e., the amount
of charge injected into the tissue is balanced by
the amount of charge drawn out of the tissue) to
minimize adverse effects on the tissue and the
electrodes.

FES electrodes are broadly of two classes:
surface electrodes and intramuscular electrodes.
Surface electrodes are positioned on the skin over
the targeted muscles. Intramuscular electrodes
are implanted near the neurons that innervate the
targeted muscles. Implanted electrodes have the
benefit of being able to recruit muscle fibers more
selectively, because they are positioned closer
to the neuromuscular junctions. However, sur-
face electrodes are less invasive and easier to
replace.

The majority of FES systems in use today
do not rely on cortical control signals but rather
rely on signals from intact, residual movements.
For example, quadriplegics can use a sip/puff
tube to control the initiation of a preprogrammed
stimulation pattern. Patients who have spinal cord
injuries at the level of the fifth to sixth vertebrae
of the cervical spinal column retain voluntary
control of the muscles above the injury and can
shrug their shoulders. Some systems detect the
electrical activity when these muscles contract
and use it as a control signal for the FES. This is
known as myoelectric control. One-dimensional
control signals such as these allow the user to
control only one degree of freedom. For example,
shrugging the shoulder might control the stim-
ulation to open or close the hand and control
the degree to which the hand opens and closes.
This ultimately limits the number of movements
to a few preprogrammed grasps. The first FES
system for grasp was developed in the 1960s. It
consisted of surface stimulation to open and close
the hand [23, 24]. Since then, advances in the
electrodes and stimulation paradigms have led to
implantable systems.
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To access a wider repertoire of movements and
ideally greater dexterity, a higher-dimensional
control signal is necessary. Using a cortical
control signal for FES would enable higher
degree-of-freedom control and thus more
complex movements. A cortical control signal is
also more natural because it taps into the neural
activity that controls muscle activity in normal
reaching. The goal is that, when the user thinks
about reaching, the brain-controlled FES would
generate a movement as seamlessly as a normal
reach.

5.5.3 Brain-Controlled FES

For a brain-controlled FES system, neural ac-
tivity is mapped to the stimulation of paralyzed
muscles. A simple way to do this is to have
the firing rate of a neuron directly control the
intensity of the simulation. A group at the Univer-
sity of Washington showed that monkeys could
modulate the firing rate of one or two neurons
to control the stimulation of temporarily para-
lyzed wrist muscles to flex and extend the wrist.
In this demonstration, when the firing rate of
the neuron crossed a certain threshold, current
was delivered through the FES in proportion to
the neuron’s firing rate, allowing the monkey to
produce graded muscle contraction force [25].
Brain control of more complex behaviors requires
more muscles and more neurons. However, it is
not as straightforward as controlling each muscle
with a different neuron because the activity of
neurons in primary motor cortex is correlated.
Instead populations of neurons are used to drive
the coordinated activity of the muscles.

We can measure the electrical activity in a
muscle while it is contracting. This technique is
called electromyography or EMG. The amplitude
of the EMG signal is a measure of motor unit
activity during muscle activation and is propor-
tional to the magnitude of muscle force. Themore
active motor units, the higher the measured EMG
amplitude and the greater the resulting force. For
brain-controlled FES, the goal is to decode the
EMG signal that would have naturally resulted

from the activity of the recorded M1 neurons and
then stimulate the muscles to artificially generate
that EMG.

As a proof of concept, researchers at North-
western University simultaneously recorded
EMG activity and neural activity in M1 from an
able-bodiedmonkeywhile themonkey performed
a reaching task [26]. They then used a linear
filter (Fig. 5.18a) with multiple inputs (i.e., the
recorded neural activity) to predict a single output
(i.e., EMG activity from one muscle). The filter
can be fit by minimizing the squared error of
the predicted EMG. The predicted EMG is a
weighted linear combination of the recent history
of neural responses from many neurons:

EMGlinear(t) =
N∑

k=1

L∑

l=0

wk,lyk (t − l) (5.24)

where l is a time lag, yk is the firing rate of neuron
k, N is the number of neurons in the population,
and wk, l is the weight that characterizes the effect
of neuron k’s firing rate at time (t− l) on the EMG
signal at time t. Typically, the time history is a few
hundred milliseconds in length.

A linear filter of this type does quite well at
predicting force signals and muscle activity but
often fails to capture specific features of EMG
signals. In particular, linear filters often fail to
capture the peaks of activity and adequately
characterize the quiescent periods between
movements. A nonlinear decoder can address
these issues, improving predictions by up to 10%.
One such option is a Wiener cascade, which is a
linear combination of the neural activity passed
through a static nonlinearity:

EMG(t) = P

(

w0 +
N∑

k=1

L∑

l=0

wk,lyk (t − l)

)

(5.25)

Here, P is a nonlinear function (e.g., often a poly-
nomial) and w0 is a bias term. The polynomial is
fit between the output of the linear filter and the
EMG activity (Fig. 5.18b). The static nonlinearity
acts to increase the gain of the peaks and decrease
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Fig. 5.18 Decoding muscle activity from neural activity. (a) Block diagram for a linear filter. (b) Block diagram of a
Wiener cascade. (c) Using a Wiener cascade to predict EMG activity

low-level noise. This is particularly important in
an FES application because it reduces unneces-
sary stimulation during the quiescent periods.

The group at the Northwestern University
further showed that the approach of predicting
EMG activity from neural population activity
could be used in a closed-loop iBMI-FES system
inmonkeys. They simultaneously recorded neural
activity in M1 and EMG activity while the
monkeys performed wrist movements or grasping
movements. They then temporarily paralyzed
the monkeys by injecting lidocaine around
the nerves innervating the forearm and hand
muscles. Temporarily paralyzed monkeys could
use the iBMI-FES system to control stimulation
of muscles in the forearm to flex and extend
the wrist and to grasp and release a ball (Fig.
5.19; [27]). This demonstration showed that a
brain-controlled FES system could allow for
more flexible and dexterous movements than

was possible with the preprogrammed grasps
available through existing FES systems.

Because people who are paralyzed cannot gen-
erate EMG activity, the aforementioned methods
(which require knowing the intended EMG activ-
ity) cannot be directly applied to train a brain-
controlled FES for these people. One way to
overcome this issue is to take advantage of the
fact that the patterns of muscle activity produced
in a given task (e.g., grasping) are stereotyped
between different individuals. To train a decoder
that predicts EMG, it is possible to use the EMG
activity measured from a healthy individual as a
template and record appropriate neural activity by
cueing the user to attempt to generate forces that
correspond to the EMG activity. This approach
was successful in monkeys [28], suggesting it
would be possible to use a similar approach to
train a brain-controlled FES for paralyzed people.

Indeed, a group from Case Western University
showed that a decoder for FES in a person
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Fig. 5.19 Grasp performance during four consecutive
trials in a iBMI-controlled FES ball grasp-and-release
task. (a) Neural activity plotted as a raster colored by
firing rate. (b) Predicted muscle activity (red) for two
muscles involved in flexing the fingers (flexor digitorum
superficialis, FDS; flexor digitorum profundus, FDP). The
predicted muscle activity was translated into stimulus
commands (black) executed by the stimulator. The vertical
dashed lines indicate the progression of successful trials:
a go cue (black dashed), the ball was picked up (blue
dashed), and the ball was released and the monkey was

rewarded (green dashed). When the iBMI-controlled FES
system is working well, the monkey modulates his neural
activity to drive the stimulation of his muscles, success-
fully completing the grasp to earn a reward (green dashed).
In addition, when the FES system is turned off during
“catch” trials, the monkey is unable to complete the trial in
the allotted time (red dashed). Note that during this trial,
the neurons are firing (a) and there is a prediction of EMG
activity (red), but no commands (black) are sent to the FES
stimulator and themonkey fails to complete the taskwithin
5 seconds (red dashed). (Adapted from Ethier et al. [27])

with spinal cord injury can be trained from
the neural activity evoked during attempted
movements (Fig. 5.20; [9]). An initial decoder
was trained from the neural activity recorded
while the participant watched a virtual arm make
goal-directed movements and simultaneously
attempted to make the same movements. This
initial decoder was refined during a virtual reality
condition in which his neural activity controlled
the movements of a virtual arm. Once the decoder
parameters were fixed, the participant performed
volitional multi-joint movements of his own FES-
actuated arm under brain control (Fig. 5.2). He

could perform point-to-point movements with
80–100% accuracy and, in one session, was
successful in 11 of 12 attempts at reaching to
grab a mug of coffee.

5.5.4 Challenges for FES

An important challenge in the development of
FES systems relates to the way motor units are
recruited by electrical stimulation. Henneman’s
size principle states that the natural physiological
order of motor unit recruitment is from small
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Fig. 5.20 A iBMI-controlled FES system for reaching
and grasping. Neural activity was recorded from two ar-
rays implanted into motor cortex. These neural signals
were used to control stimulation of intramuscular elec-

trodes implanted in the biceps, triceps, forearm, and hand
muscles. The neural signals also actuated the mobile arm
support. (Reprinted from Ajiboye et al. [9] with permis-
sion)

to large units (Fig. 5.21). That is, motor units
that generate small amounts of force are recruited
first (allowing for precise control of small move-
ments), and as the force requirements grow larger,
the units that generate larger forces (but are con-
sequently not as finely controlled) are recruited.
This natural recruitment order arises from Ohm’s
law, V = IsynapticRinput, where V is voltage, I is
the synaptic current, and R is the input resis-
tance. Smaller neurons have smaller membrane
surface area, which means they have fewer ion

channels and a correspondingly larger input re-
sistance. Thus, they require less synaptic current
to change the membrane potential enough to fire
action potentials. Similarly, larger neurons have
more membrane surface area, more ion channels,
and a lower input resistance. So, they require
more synaptic current to change the membrane
potential enough to fire action potentials. Given a
common synaptic drive, the smaller motor units
will be recruited before the larger motor units.
This natural recruitment order minimizes fatigue
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Fig. 5.21 Motor units are
naturally recruited from
smallest to largest
according to Henneman’s
size principle. This means
that slow-twitch,
fatigue-resistant motor
units (red) are recruited at
lower activation thresholds
than fast-twitch, fatigable
motor units (purple)
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by recruiting fatigue-resistant muscle fibers first
and only recruiting fatigable fibers when high
forces are necessary. This is why it is possible
to walk for hours but only sprint for minutes at
a time.

By contrast, in an FES system, electrical stim-
ulation recruits motor units in the reverse order of
Henneman’s size principle. With electrical stim-
ulation, the injected current creates an electric
potential across the membrane. The larger neu-
rons have more ions and are easier to depolarize.
Thus, in FES the larger motor units are recruited
before the smaller motor units. This means that
the fatigable motor units are recruited before the
fatigue-resistant motor units, which is the reverse
of the natural physiological order. The reverse re-
cruitment order limits dexterity and it also causes
fatigue. A muscle that is fatigued will produce
less force for the same stimulation than a muscle
that is not fatigued.

There are some ways to counteract the re-
verse recruitment order. One such proposal is
the utilization of a pre-pulse. A pre-pulse is a
pulse several hundred microseconds in duration
which precedes the stimulation and hyperpolar-
izes the neurons, making them less easily ex-
citable. As with other stimulation, a pre-pulse
preferentially affects the larger-diameter motor
units. With the appropriate parameters, the pre-
pulse can be selectively applied so that only the
large-diameter axons are hyperpolarized, leaving
the small-diameter, fatigue-resistant motor units

to be activated by the subsequent stimulation
pulse. This type of pre-pulse paradigm has the
potential to reduce fatigue under FES conditions
by recruiting fatigue-resistant fibers earlier.

Another attempt to mitigate the fatigue prob-
lems encountered with FES is to pretreat the
muscles with low-level stimulation. This has two
benefits. First, the low level of stimulation acts
as exercise for the muscles, counteracting the
observed increase in fatigability of chronically
paralyzed muscles due to disuse [29]. The second
benefit is that motor units can actually be changed
from fatigable to fatigue-resistant through ex-
ercise. Indeed, fatigability profiles can also be
changed with low levels of electrical current [30].
Patients implanted with FES systems are often
pretreated with low-level stimulation to change
muscle fibers toward fatigue-resistant fibers.

5.6 The Future of iBMIs

Brain–machine interfaces have shown promise
for restoring motor function to patients with neu-
rological injury or disease. However, there are
still many improvements before iBMIs become
a widespread treatment for paralysis. In this sec-
tion, we will discuss ongoing work toward mak-
ing iBMIs a clinical reality, such as including
somatosensory feedback and building better elec-
trodes. Finally, we will end by discussing an
emerging new field in which iBMIs are used
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to answer basic science questions about motor
learning and motor control that are currently too
difficult to tackle any other way.

5.6.1 Restoring Somatosensory
Feedback

Thus far, we have discussed motor control from
the perspective of controlling the movements of
our body. A critical component of motor control
is sensory feedback or sensory information about
ongoing movements [31]. All of the iBMIs we
have discussed to this point have relied solely
on visual feedback. For example, when using an
iBMI to control a robotic limb, the user can see
where the limb moves. Another equally (if not
more) important source of sensory information
which we have not yet discussed is somatosensa-
tion, which is the sensation of touch, temperature,
and proprioception (e.g., body position).

Without somatosensation, the everyday move-
ments that many of us take for granted would
be much more difficult. For example, when we
carry a heavy box, the texture receptors in our
fingertips let us know when the box starts to slip,
allowing us to adjust our grip. When we reach to
grab a cup of coffee, the temperature receptors in
our fingertips tell us that the coffee is too hot to
drink. And when we get ready to go outside, our
sense of proprioception lets us slide our arms into
the sleeves of our jacket without having to turn
around. Given the importance of somatosensation
during movements such as these, it makes sense
that a BMI would benefit from incorporating so-
matosensory feedback.

In principle, sensory percepts can be restored
by electrically stimulating the neural structures
responsible for sensation and perception [32].
For amputees, somatosensory feedback could be
provided by stimulating the peripheral sensory
nerves. However, for patients with quadriplegia
due to spinal cord injury, stimulating the nerves
would not work because the pathway between the
brain and the limb has been disrupted. In this case,
the somatosensory cortex could be stimulated
directly with intracortical electrodes [33].

One type of movement that is particularly
aided by somatosensory feedback is grasping.
Grasping an object requires information about
contact forces that is difficult to get from visual
feedback alone. For example, consider the
difference in the forces on the hand when lifting
an egg versus a suitcase. Our hands have a variety
of touch sensors providing information about
shape, weight, size, and texture – information
critical for effective grasping. Incorporating
similar information into a BMI could improve
the degree to which a user could reach and grab
a wide variety of objects. A bidirectional BMI
(i.e., one that incorporates both motor output and
sensory input) could potentially both improve
motor function and restore the sense of touch.

5.6.2 Building Better Electrodes

A major obstacle to building clinically viable iB-
MIs is that the signals recorded from chronically
implanted electrode arrays degrade over time.
This happens because the electrodes trigger an
inflammatory response in the brain that eventu-
ally encapsulates the electrodes with a protective
layer of glia, forming a “glial scar” [34]. This
encapsulation reduces the quality of the recorded
signals because the neurons are pushed farther
away from the electrode tips. Typically, it is pos-
sible to record neural signals from chronically
implanted electrodes for months to a few years
before the signal degrades. However, it would
be unreasonable to expect patients to replace an
iBMI (a process involving brain surgery and the
associated risks) every few years for the rest of
their lives.

There have been a number of attempts to
minimize this problem of signal degradation.
One such approach is to coat the electrodes with
a chemical to minimize scar formation. L1, a
neuronal specific cell adhesion molecule, has
been shown to minimize glial scar formation
[35]. Other neurotrophic chemicals are also being
tested. Another approach is to make electrodes
that have mechanical characteristics that are more
similar to brain tissue. Most electrode arrays



216 E. R. Oby et al.

today are made with rigid materials, such as
tungsten or silicon. The mismatch in the stiffness
of the electrodes and the soft brain tissue can
induce damage and exacerbate the inflammatory
response. To minimize this problem, electrodes
can be made from soft materials that are a closer
match to the mechanical properties of the brain.
Yet another approach is to reduce the diameter
of the electrodes. For example, Neuralink is
developing electrodes the size of neurons that
can be sewn into the cortex with a robot that acts
like a sewing machine [36]. Although this work
is at its infancy, the hope is that with enough
investment, these approaches will lead to longer
lasting, more information-rich neural recordings.

5.6.3 iBMIs for Basic Science

As discussed in Sect. 5.2, the more we under-
stand about natural motor control, the better BMI
systems will be. In turn, the inverse is true: by
studying how the brain functions during con-
trol of a BMI, we can gain new insights into
the natural processes of motor planning, control,
and learning. A BMI is a simplified motor con-
trol system compared to arm movement control.
When we move our arms, there are hundreds of
thousands of output neurons; the mapping from
these neurons to movement is unknown; and the
arm has nonlinear dynamics that are difficult to
measure. All of these characteristics make it dif-
ficult to study sensorimotor control during arm
reaching. By comparison, an iBMI simplifies all
of the features of natural arm reaching, and this

makes motor control easier to study: all the output
neurons are recorded, the mapping from these
neurons to the movement is specified by the ex-
perimenter, and the dynamics of the cursor or
robotic limb are known and can be made to be
simple (e.g., linear). As a result, it is possible to
make scientifically causal statements about the
relationship between neural activity and behavior
(in this case, cursor or robotic limb movements)
that are not currently possible when studying arm
movements. Together these features make iBMIs
a powerful tool for studying sensorimotor control
(Table 5.1).

A key feature of sensorimotor control is the
ability to learn, adapt, and refine motor skills over
time. Our understanding of learning is grounded
in concepts of synaptic plasticity and cortical map
plasticity. However, we lack an explanation for
how such changes give rise to new behavioral
capacities. We can leverage an iBMI to establish
a causal link between learning-related changes
in the brain and new behavioral capacities, be-
cause in an iBMI, we record from all of the
neurons that drive the behavior, and we as the
experimenter define the relationship between the
activity of those neurons and the behavior. As
discussed in the previous sections, we can begin
with a BMI decoder that relates neural activ-
ity patterns to cursor velocities in a way that
provides proficient control without requiring the
user to learn. We can then induce learning by
presenting a novel decoder from neural activity
to behavior (i.e., cursor velocity). This is akin
to giving somebody a flipped computer mouse
and asking them to learn to control the cursor.

Table 5.1 Comparison of BMI control to arm reaching

Arm reaching iBMI

Effector Arm Cursor or robotic limb

Number of non-output neurons Millions Millions

Number of output neurons Thousands
(only a subset are recorded)

Tens to hundreds
(all are recorded)

Neuron-to-movement mapping Unknown Known
Effector dynamics Difficult to measure, nonlinear Known, can be linear
Sensory feedback Tied to the arm Flexibly manipulable

From Golub et al. [37]
Entries in bold indicate components of an iBMI that make it a simplified, well-defined, and easily manipulated system
for studying sensorimotor control
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Through trial and error, the person can learn to
use a flipped mouse. Similarly, through trial and
error, the user can learn to use a novel BMI de-
coder [38]. Because we know exactly how neural
activity relates to cursor movement in the iBMI,
any observed improvement in behavior (e.g., ac-
curacy of cursor movements) can be attributed
to an observed change in the neural activity. We
have found that the way in which neurons are
interconnected can shape learning that occurs on a
timescale of hours [39]. In particular, it is easier to
learn tasks requiring population activity patterns
that are consistent with the underlying network
constraints than tasks requiring novel population
activity patterns. On a time scale of days toweeks,
populations of neurons can produce new patterns
of activity to enable new behavioral capacities
[40]. These findings can inform the design of
future iBMIs in which we can leverage the user’s
ability to learn to create even higher-performance
iBMI systems [41].

Homework

1. Consider designing a BMI to classify move-
ment to the right or left, and we want to test
how well it works with one neuron. If the
BMI user intends to move right, the neuron’s
firing rate is drawn from a Gaussian distribu-
tion with mean μright = 8 spikes/second and
standard deviation σ right = 5 spikes/second.
If the BMI user intends to move left, the neu-
ron’s firing rate is drawn from aGaussian dis-
tribution with mean μleft = 12 spikes/second
and standard deviation σ left = 6 spikes/sec-
ond.
(a) Suppose we make one measurement of

the firing rate, y, and we assume the
prior probability of “left” and “right” are
equal. For each of the cases below, would
we classify “left” or “right”?

y (Spikes/second) 2 5 8 11 14 17

Classification

(b) Suppose we now assume that the
BMI user moves “left” twice as often
as “right” (i.e., P(left) = 2/3 and
P(right) = 1/3. For each of the cases
below, would we classify “left” or
“right”?

y (Spikes/second) 2 5 8 11 14 17

Classification

2. In Sect. 5.3 we showed how to implement
a classifier with Gaussian firing statistics,
where the neural activity for class k is mod-
eled as y∼N(µk,�k), where µk ∈ Rd and
�k ∈ Rd × d are the mean and covariance of
the activity of a population of d neurons. Here
we will assume that the covariance matrix is
the same for each class k = 1, . . . , K (i.e.,
�1 = �2 = . . . = �K).
(a) First, suppose we have a new record-

ing of neural activity, y. Also, suppose
that P(ck) = π k. Using Bayes’rule, find
logP(ck| y), up to the normalizing con-
stant.

(b) Find the decision boundary used for de-
termining whether the point y came from
class j or class k, and simplify the expres-
sion.

(c) Is the decision boundary linear?
3. In this problem we will derive the equations

to implement a classifier based on Poisson
spike counts. The spike count of neuron i
given class k is Poisson-distributed with pa-
rameter λik. We will assume that the D neu-
rons, y1, . . . , yD are conditionally indepen-
dent given the class j. In other words, given
neural activity y ∈ RD, the probability that y
came from class k is as follows:

P (y|ck) =
∏D

i=1
P (yi |ck) , where

P (yi |ck) = exp (−λik) λ
yi

ik/yi !
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(a) Let P(ck)= π k. Find P(ck| y) using Bayes
rule.
Now simplify the expression above by
taking the log: log P(ck | y).

(b) Given a new point y, we want to deter-
mine to which class this point belongs.
Derive the decision boundary that deter-
mines whether we classify a new point
y as belonging to either class j or class
k. Use the expression that you derived in
part a.

(c) Is the decision boundary linear?
4. In Sect. 5.3 we provided the following

expressions for the training phase of a
classifier: µk = 1

N

∑N
i=1yi (Eq. 5.9) and

Σk = 1
N

∑N
i=1

(
yi − µk

) (
yi − µk

)�
(Eq.

5.10), where yi ∈ Rd for all i = 1, . . . , N
is the neural activity recorded with class k,
µk ∈ Rd, and �k ∈ Rd × d. Show that these
values of µk and �k maximize the following
equation for the likelihood:

L
(
µk,Σk |y1, . . . , yN,ck

) = P
(
y1, . . . , yN |ck

)

= ∏N
i=1(2π)−d/2|Σk|−1/2

exp
(
− 1

2

(
yi − µk

)�
Σk

−1
(
yi − µk

))

5. In Sect. 5.4, we considered a two-neuron ex-
ample of the PVA decoder where the neurons
had orthogonal preferred directions (e.g., one
neuron preferred 90◦, while the other neuron
preferred 180◦). Show that if the two neu-
rons do not have orthogonal tuning direc-
tions, the directions decoded by PVA will be
biased.

6. Show that a neuron that exhibits cosine tun-
ing also shows linear tuning to velocity. That
is, suppose that given a reach in the θ direc-
tion with speed s, a neuron’s firing rate can be
written as y = b0 +ms cos

(
θ − θ−→

p

)
, where

b0 is the neuron’s baseline firing rate, m is
its modulation depth, and θ−→

p is the neuron’s
preferred direction. Show that this means we
can also write y = b0 + bTv, where b and v
are both 2D vectors.

7. Derive the expressions for the training phase
of the Kalman filter in Sect. 5.4:

B =
(∑T

t=1 ytxT
t

) (∑T
t=1 xtxT

t

)−1

Σ = 1
T

∑T
t=1 (yt − Bxt ) (yt − Bxt )

T (Note
that here we use the B found above.)

A =
(∑T

t=2 x tx
T
t−1

) (∑T
t=2 x t−1x

T
t−1

)−1

Q= 1
T −1

∑T
t=2 (x t − Ax t−1) (x t −Ax t−1)

T

(Note that here we use the A found above.)

8. Consider using a BMI to play Pong with one
neuron. That is, we will use a Kalman filter to
decode position along a one-dimensional axis
from the firing rate of a single neuron. Let the
state model be xt = xt − 1 + ωt, ωt∼N(0, q)
and the observation model be yt = bxt + εt,
εt∼N(0, σ ).
(a) Show that the estimate of the position on

time step t, μt, can be written in the form

μt = (1 − α) μt−1 + α
(yt

b

)

(b) Prove that 0 ≤ α ≤ 1.
(c) When does α approach 0? Under this

case, why does it make sense for
μt = μt − 1?

(d) When does α approach 1? Under this
case, why does it make sense for
μt = yt/b?

9. You decide to speed up the implementation of
your Kalman filter by skipping the one-step
prediction. Whereas normally you would
solve the measurement update (Eq. 5.17) and
one-step predictions iteratively on each time
step (Eq. 5.16).

You instead decide to just iterate the mea-
surement update step, by directly plugging in
the velocity estimate from the previous time
step, P

(
x t−1|{y}t−1

1

)
, without making a one-

step prediction:

P
(
x t |{y}t1

) = P
(
y t |x t

)
P

(
x t−1|{y}t−1

1

)

P
(
y t |{y}t−1

1

)
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Describe qualitatively what will happen to
the velocity estimate over time.

(Hint: when in doubt, try simulating it or
solving the 1D case.)

10. The goal of the measurement update of the
Kalman filter is to find P(xt| y1, . . . , yt).
To do so, we adopted the strategy in

Sect. 5.4 whereby we would first find the
joint distribution P(xt, yt| y1, . . . , yt − 1),
and then use the theorem of conditioning
for jointly Gaussian random variables to
find P(xt| y1, . . . , yt). Here we will derive
the means and covariances of the joint
distribution

[
y t | y1, . . . , y t−1

x t | y1, . . . , y t−1

]
∼ N

([
Bμ−

t

μ−
t

]
,

[
B
−

t BT + Σ


−
t BT

B
−
t


−
t

])

(a) Find the mean of yt | y1, . . . , yt−1.
(b) Find the variance of yt | y1, . . . , yt−1.
(c) Find the covariance of xt, yt when both

are conditioned on yt, . . . , yt − 1.
11–12. We have provided a dataset (https://
github.com/emilyoby/bmi-data-set) consist-
ing of center-out arm reaches and neural ac-
tivity recorded from a Utah electrode array
implanted inM1. The following describes the
data format. The .mat file has two data struc-
tures: ‘trainTrials’ contains 180 trials to be
used as training data, and testTrials contains
8 trials to be used as test data. Each data
structure contains ‘spikes’, ‘handPos’, and
‘handVel’ variables, representing the spiking
activity, hand position, and hand velocity,
respectively, on each trial in which a mon-
key reached to one of eight different targets.
The ‘spikes’ variable contains, for each trial,
the number of threshold crossings in 50 ms
bins recorded simultaneously from the 91
electrodes and has dimensions (n time steps)
× (91 electrodes), where n is the number
of time steps within a particular trial. For
example, ‘trainTrials.spikes{i}(n,k)’ contains
the number of threshold crossings recorded
on the kth electrode in the nth time step of
the ith trial. The ‘handPos’ and ‘handVel’
variables are structured similarly and contain
the 2D hand position (in mm) and velocity
(in mm/sec), respectively, for the same time
steps as in the ‘spikes’ variable.

For the problems below, use the provided
neural and kinematic data to implement the
continuous decoders discussed in Sect. 5.4.

11. Use PVA decoder to estimate the movement
velocity during a center out task.
(a) Fit the parameters of the decoder using

the 180 trials of training data.
(b) Test the decoder on the eight test trials.

Plot the decoded trajectories and the ac-
tual movement trajectories on the same
plot.

(c) Try improving the decoding by smooth-
ing the firing rates by using a running
average of the firing rates during the pre-
vious 250 ms.

12. Use a Kalman filter decoder to estimate the
movement trajectory for each trial.
(a) Fit the parameters of the decoder using

the 180 trials of training data.
(b) Test the decoder on the eight test trials.

Plot the decoded trajectories and the ac-
tual movement trajectories on the same
plot.
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