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Learning has been associated with changes in the brain at every
level of organization. However, it remains difficult to establish a
causal link between specific changes in the brain and new behavioral
abilities. We establish that new neural activity patterns emerge with
learning. We demonstrate that these new neural activity patterns
cause the new behavior. Thus, the formation of new patterns of
neural population activity can underlie the learning of new skills.

skill learning | neural population | motor cortex | brain–computer interface

Our understanding of learning is grounded in the concepts of
synaptic plasticity (1, 2) and cortical map plasticity (3, 4).

However, we lack an explanation for how such changes give rise
to new behavioral capacities. Establishing a causal link from
learning-related changes in the brain to new behavioral capac-
ities would require knowing which neurons drive behavior, as
well as the relationship between the activity of those neurons and
behavior. Then, any observed change in behavior can be attrib-
uted to an observed change in the neural activity. A brain–
computer interface (BCI) enables us to link changes in neural
activity directly to learning because the relationship between the
neural activity and the behavior is known exactly, and only the
neurons we record directly influence behavior (5).
We hypothesize that learning new skills can be achieved by the

formation of new patterns of neural activity, where patterns of
neural activity are defined as the joint firing rate of a population of
neurons measured during a brief time window (SI Appendix, Ma-
terials and Methods). To demonstrate that new neural activity pat-
terns drive learning, we must achieve three objectives: First, we
need to encourage new neural activity patterns to form. Second, we
need to detect new patterns, should they appear. Third, we need to
show that the new patterns directly cause the new behavioral ca-
pacities that emerge with learning. A BCI learning paradigm pro-
vides a framework whereby we can achieve these objectives.
In our BCI paradigm, a monkey moves a computer cursor

from the center of a screen to one of eight peripheral targets by
volitionally modulating the activity of a population of ∼90 neural
units recorded with a multielectrode array chronically implanted
in the arm region of primary motor cortex (Fig. 1A and SI Ap-
pendix, Materials and Methods). Each experiment begins by pre-
senting the monkey with an “intuitive mapping” that relates
neural activity patterns to cursor velocities in a way that provides
proficient control without requiring the animal to learn. We then
induce learning by presenting the monkey with a novel mapping
from neural activity to cursor velocity (6–8).
Previously, we have shown that the structure of neural pop-

ulation activity limits the learning that can occur within a
single day (8). We characterize how neurons naturally covary as
the “intrinsic manifold” (Fig. 1B). In our BCI system, neural

activity is mapped into the intrinsic manifold and then to cursor
velocity (Fig. 1 A and B). This enables us to study learning by
constructing two types of novel BCI mappings. A novel BCI
mapping that is consistent with the intrinsic manifold, i.e., a
“within-manifold perturbation” (WMP), can be well learned
within a single day. The neural strategy for learning WMPs does
not involve the formation of new neural activity patterns. In-
stead, learning occurs by reassociating preexisting patterns of
neural activity with different intended movements (9). In con-
trast, novel BCI mappings that are inconsistent with the intrinsic
manifold, i.e., “outside-manifold perturbations” (OMPs), are not
well learned within a single day. OMPs encourage the formation of
new neural activity patterns. Thus, we achieve the first objective of
our study by challenging animals to learn to use OMP mappings
given extended practice over several days. To this end, we use the
framework of the intrinsic manifold to repeatedly and reliably
construct novel BCI mappings that encourage the formation of new
patterns of neural activity and ask whether the new mappings are
learnable. Through subsequent analyses, we achieve the second and
third objectives of our study, demonstrating that OMP mappings
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are indeed learned by the formation of new patterns of neural
activity, and that those patterns directly drive the new behavior.

Results
We conducted 15 multiday OMP learning experiments (ranging
from 6 to 16 d per experiment, average 9.2 d) across two mon-
keys. Each of these novel OMP mappings was learned over
several days (Fig. 1 C and D). With multiday practice, the
amount of OMP learning is substantially greater than single-day

OMP learning (Fig. 1D; t test P < 10−4), and is comparable to the
single-day learning we previously observed for WMPs (8) (Fig.
1D; t test P = 0.53). To facilitate learning, we employed an in-
cremental training paradigm (10) (SI Appendix, Materials and
Methods and Fig. S1 A–D). Multiday exposure to an OMP with
no incremental training led to inconsistent learning (SI Appendix,
Fig. S1 E–G). The incremental training approach was not ef-
fective within a single day (SI Appendix, Fig. S1G). For most
experiments, learning proceeded in a manner that resembles skill
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Fig. 1. Using a brain–computer interface to study learning. (A) Schematic of the BCI system. Monkeys controlled a BCI cursor (yellow) to acquire one (cyan) of
eight possible (gray) targets by modulating their neural activity. In our BCI system, ∼90D neural activity is first mapped into the 10D intrinsic manifold, and
then to 2D cursor velocity. (B) A simplified, conceptual schematic of neural activity patterns (dots). The neural activity patterns tend to lie in a low-dimensional
subspace, termed the intrinsic manifold (gray plane). Monkeys move the BCI cursor by volitionally modulating their neural activity. At the beginning of each
experiment, cursor velocities were determined by an intuitive BCI mapping (black arrow). Here, patterns colored green would move the cursor to the right and purple
patterns would move the cursor to the left. To induce learning, we changed the mapping to an OMP mapping (blue arrow). Under the perturbed mapping, neural
activity patterns map to different cursor velocities than under the intuitive mapping. This encourages the monkeys to learn. (C) Cursor trajectories for successful trials
during a representative multiday OMP experiment (i.e., OMP 1; the multiday OMP experiment beginning on June 17, 2016). “Intuitive” trajectories show 40 con-
secutive trials with the intuitive mapping as an example of proficient cursor control. The second column shows the first 40 trials after switching to the OMP mapping.
Performance is impaired. The third column shows the best 40 consecutive trials on day 1. The fourth column shows the best 40 consecutive trials after 6 d of practice.
(D) Quantifying the amount of learning for single-day OMP (blue), multiday OMP, incremental training (green), and single-dayWMP (red) experiments. An amount of
learning of 1 indicates complete learning, and a value of 0 indicates no learning. Vertical lines indicate the mean of each distribution. (E) Learning curves for the six
experiments with the greatest amount of learning. The example in C is highlighted in black.
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learning (11): gradual improvement over the course of many
days, with some dips and rebounds in performance (Fig. 1E and
SI Appendix, Fig. S1 C and D). The dips and rebounds likely
reflect some combination of the natural skill-learning process,
motivation during a difficult task, and day-to-day recording
instabilities (12–14).
The second objective of our study is to detect whether new

neural activity patterns emerged during multiday OMP learning.
By construction, forming new patterns of neural activity is the
optimal neural strategy for learning to control the cursor under
an OMP mapping because this would lead to the fastest cursor
speeds. However, it is possible that the brain is unable to form
new patterns because constraints exist on the patterns of neural
activity that a population of neurons can exhibit (8, 9, 15–18). If
this is the case, the monkey could still show some limited be-
havioral improvements by learning to reassociate preexisting
patterns of neural activity with different intended movements
(9). Thus, behavioral improvements alone are not sufficient to
conclude that new patterns of neural activity have emerged.
Detecting the appearance of a new pattern of neural activity in

the high-dimensional neural space is difficult because we observe
only a limited number of patterns relative to the dimensionality
of the space. Instead, we leveraged our BCI framework to look

for the emergence of new neural activity patterns within the low-
dimensional space specified by the BCI mapping. We started by
defining the patterns of neural activity observed before learning
as the “intuitive neural repertoire” (9). Then we projected the
∼90D neural activity patterns comprising the intuitive neural
repertoire into the 2D velocity space defined by the OMPmapping
(Fig. 2A). This defines the limits on cursor velocities the monkey
could produce through the OMP mapping if he only expressed
patterns of neural activity from within his intuitive neural repertoire
(Fig. 2B and SI Appendix, Materials and Methods). We term this the
neural “speed limit.”Any cursor velocities we observe after learning
that exceed the speed limit must have arisen from neural activity
patterns that are outside of the intuitive neural repertoire, and thus
are new (Fig. 2 B and C). Over the course of many days, monkeys
learned to move the cursor at velocities that exceeded the speed
limit for many targets (Fig. 2 D–F). The percentage of neural ac-
tivity patterns that are new significantly increased over days (t test,
P = 0.0015; Fig. 2G). This shows that the brain can generate new
neural activity patterns when learning to perform a new skill, but
that it takes several days to do so.
The third objective of our study is to show that the new neural

activity patterns caused the behavioral improvements. In con-
ventional learning studies, neural changes are observed that
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Fig. 2. New neural activity patterns emerge with long-term BCI learning. (A–C) A schematic of the technique used to identify outside-repertoire activity
patterns. The OMP maps ∼90D neural population activity patterns to 2D cursor velocities. Here we illustrate using 3D neural activity patterns and a 2D OMP
mapping. (A) The neural activity patterns (orange dots) generated by the animal while using the intuitive mapping define an intuitive neural repertoire (dark
gray ellipsoid). Each neural activity pattern maps to a cursor velocity (orange X, as one example) through the OMP mapping (blue plane). (B, Left) The ve-
locities predicted from the intuitive neural repertoire (orange Xs) through the OMP mapping define a speed limit (dashed gray ellipse). (Right) After learning,
cursor velocities are observed that exceed the speed limit (three Xs outside of gray ellipse). (C) If the monkey produces cursor velocities that exceed the speed
limit, those velocities were generated by neural activity patterns that lie outside of the intuitive neural repertoire and thus are new. (D–F) Using the speed
limit to detect new neural activity patterns for an example experiment (OMP 1 from Fig. 1). (D) Velocities generated from the intuitive neural repertoire
mapped through the OMP mapping. Each dot is the velocity resulting from one neural activity pattern (45-ms bin). Dots are colored by instructed target
location (Inset). The speed limit is defined as the 95% convex hull (gray dashed line). By definition, 5% of the neural activity patterns are outside of the speed
limit. (E) Day 1 velocities, generated while using the OMP mapping, mostly fell within the speed limit. Dots shown are from the 40 consecutive trials when
behavior was the best on day 1. On these trials, 6% of the neural activity patterns were outside of the speed limit. (F) On day 8, some velocities exceeded the
speed limit (e.g., patterns corresponding to purple, blue, and teal targets). Same conventions as in E. (G) The percentage of neural activity patterns that were
new on the last day of OMP learning exceeds the percentage seen on the first day of learning for most experiments. Each symbol is one multiday OMP
learning experiment. OMP1 is indicated in black.
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accompany learning, but it has been difficult to know if those
changes are directly responsible for the learned behavior. A BCI
allows us to assess the behavioral consequence of any given
neural activity pattern. To assess the behavioral impact of each
neural activity pattern, we measured the component of cursor
velocity in the direction of the target, which we term “progress”
(Fig. 3A). Higher progress indicates straighter and/or faster
cursor movements. Over the course of a multiday experiment,
progress improved (Fig. 3B). Increases in progress were posi-
tively correlated with the emergence of more new neural activity
patterns (Fig. 3C). This indicates that the monkey learned to
move the cursor faster and straighter to the target in part by
producing new neural activity patterns.
Before we can conclude that new neural activity patterns

emerge due to learning, we need to ensure that they do not
emerge by chance or due to neural recording instabilities. We
performed three key controls to address this. First, we show that
the new activity patterns were specific to the OMP being learned,
and not generally helpful through other OMP mappings. To test
this, we mapped the neural activity patterns generated by the
monkey after learning through 500 random OMP mappings to
assess how much apparent learning would have occurred with
mappings which the monkey never experienced. The apparent
learning rarely exceeded the learning observed with the OMP
mappings which the monkey did experience (SI Appendix, Fig.
S2). This rules out the possibility that the animal learned a
general strategy that would work for any OMP.
Second, we show that new patterns do not emerge without

substantial learning pressure. That is, they do not appear by
chance or because of neural recording instabilities. To assess
this, we conducted control experiments in which the monkey
used the same intuitive mapping for several days. This is a low
learning pressure scenario because while control is good from
the beginning of the experiment, there may still be incentive for
the animal to increase his reward rate. The recording instabilities
during these control experiments were indistinguishable from
our multiday OMP learning experiments (SI Appendix, Fig. S3),
and, importantly, they do not result in the same emergence of
new patterns of neural activity (SI Appendix, Fig. S4B). We also

mapped the neural activity recorded during multiday intuitive
mapping experiments through 500 random OMP mappings,
which the monkey never experienced (SI Appendix, Fig. S4C).
This is a “no learning pressure” scenario because the monkey
never received feedback about how his neural activity would
have impacted behavior through these mappings. The day-to-day
recording instabilities in a no learning pressure scenario did not
manifest as learning (SI Appendix, Fig. S4D).
Third, we assessed the extent to which the new activity pat-

terns moved outside of the speed limit during learning. If new
neural activity patterns are formed by expanding the neural
repertoire, the distance of the new patterns from the speed limit
should increase with learning. We found that in multiday OMP
learning, not only does the percentage of patterns that are new
increase with learning (Fig. 2 and SI Appendix, Fig. S4 A and D),
but also the distance of the new patterns from the speed limit
increases (SI Appendix, Fig. S5). Taken together these controls
confirm that the new neural activity patterns that emerge during
multiday OMP learning are specific to the learned mapping, are
directly responsible for behavioral improvements, and cannot be
attributed to recording instabilities or other chance events.
We have shown that learning can proceed by the formation of

new neural activity patterns that directly drive behavioral im-
provements. We wondered what characteristics make these new
neural activity patterns different from the existing patterns. It
might be that the new patterns are well explained by the pre-
existing correlation structure, which is captured by the intrinsic
manifold. Such new patterns could arise from organized changes
in neural firing rates that conform to the preexisting correlation
structure. We characterize this as an inside-manifold change
(Fig. 4A). Alternatively, it might be that the new patterns arise
from changes in the correlations between the neurons. We
characterize this as an outside-manifold change (Fig. 4B). To
determine the extent to which the new patterns generated by the
animal resulted from firing rate changes or correlation changes,
we decomposed each neural activity pattern into an inside-
manifold component and an outside-manifold component (SI
Appendix, Fig. S6 A and B). This enabled us to separately de-
termine the inside-manifold and outside-manifold contributions
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to progress (SI Appendix, Materials and Methods). The new
neural activity patterns on the last day of a multiday learning
experiment include patterns with both substantial inside- and
outside-manifold contributions to progress (Fig. 4C and SI Ap-
pendix, Fig. S6 C–E). This means that animals learned to move
the cursor to some targets by generating new neural activity
patterns that were outside of the intuitive neural repertoire but
within the manifold, whereas other targets were learned by
generating new neural activity patterns that were both outside of
the intuitive neural repertoire and outside of the intrinsic man-
ifold. Thus, learning can occur by changing the correlation
structure (SI Appendix, Fig. S6C, blue), and also by changing
firing rates in a manner that preserves the correlation structure
(SI Appendix, Fig. S6C, red). We conclude that the brain can
overcome the neural constraints imposed by the intrinsic mani-
fold that we previously observed during single-day learning (8),
but doing so takes several days.

Discussion
We found support for our hypothesis that populations of neurons
can produce new patterns of activity to enable new behavioral
capacities. Our BCI approach allowed us to establish a causal
link from changes in neural activity patterns to changes in be-
havior. We encouraged new neural activity patterns to form by
presenting the monkey with novel BCI mappings (OMPs). We
detected the emergence of new patterns of neural activity after
several days of practice with each OMP mapping. These patterns
led directly to improved behavior. Some new patterns conformed
to the preexisting correlation structure among the population of
neurons, whereas other new patterns represented changes in the
correlation structure. We expect that skill learning in general
may proceed in part by the formation of new neural activity
patterns appropriate for the learned behavior (19).
We can interpret changes in the brain at other levels of or-

ganization in the context of changes in neural populations. For
example, learning has been associated with synaptic plasticity
and the expansion of cortical maps. The time course of learning
that we observed is consistent with findings that cortical syn-
aptogenesis and motor map reorganization occur during late
phases of skill learning (20). We posit that OMP learning in-
volves synaptic plasticity. In fact, a function of synaptic plasticity

could be to permit a network of neurons to generate new pat-
terns of activity. This plasticity may occur among the neurons in
M1 from which we record, or among neurons from which we do
not record, but that drive the recorded population.
Learning has been associated with changes in tuning proper-

ties of individual neurons in previous BCI (6, 7) and motor skill
learning (21) studies. We posit that the formation of new neural
activity patterns during long-term BCI learning may provide a
parsimonious explanation for the tuning curve changes reported
in earlier studies. In particular, our results combined with earlier
BCI studies (6–9, 15, 16, 18, 22–26) and motor learning studies
(27, 28) suggest that fast and slow learning are driven by dif-
ferent neural mechanisms. Fast learning can be accomplished by
reassociating preexisting patterns of neural activity with new
behaviors (9). This would result in neural tuning changes that are
coordinated across the population (6, 29). Slow learning, as
reported here for OMP mappings, can involve the formation of
new patterns of neural activity. This would correspond to neural
tuning changes that are specific to individual neurons (29). Other
slowly learned phenomena that may also entail the creation of
new patterns of neural population activity include motor skill, or
de novo (30), learning (31, 32), cognitive learning (33, 34), and
stroke recovery (35, 36). In the future, it might be possible to facil-
itate learning in those contexts by directly guiding the formation of
new neural activity patterns appropriate for the desired behavioral
capacities, as we have done here.

Materials and Methods
We used a BCI paradigm in which the monkey moved a computer cursor from
the center of a screen to one of eight peripheral targets by volitionally
modulating the activity of a population of ∼90 neural units recorded with a
multielectrode array chronically implanted in the arm region of primary
motor cortex. Each experiment began by presenting the monkey with an
“intuitive” mapping that relates neural activity to cursor velocities in a way
that provides proficient control without requiring the animal to learn. Then,
we induced learning by presenting the monkey with a novel mapping from
neural activity to cursor velocity. The novel mappings encouraged the for-
mation of new neural activity patterns. Subsequent analyses, demonstrate
that the novel mappings are learned by the formation of new patterns of
neural activity, and that those patterns directly drive the new behavior.
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Fig. 4. Monkeys can produce new neural activity patterns outside of the intrinsic manifold. There are two types of new neural activity patterns: (A) those
that are outside the repertoire, but remain within the manifold, and (B) those that are outside the manifold. Either type can yield performance improve-
ments. (C) Animals learn using both inside-manifold and outside-manifold strategies for a given OMP mapping. Each bar shows one target from one multiday
OMP experiment. The overall learning, defined as change in progress from day 1 to the last day, is represented by the green dot. Targets are ordered based on
the amount of learning. The inside-manifold contributions to that learning are shown in red. The outside-manifold contributions are shown in blue. For visual
clarity, data presented here show only targets with behavioral improvement and only the helpful contributions are shown. See SI Appendix, Fig. S6 for a full
presentation of these data.
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